
27. Means and Medians

Three Instructive Problems:

 The Apportionment Problem

 The Polygon Averaging Problem

 The Median Filtering Problem

What?

The Apportionment Problem

How to fairly distribute 435 Congressional
Districts among the 50 states.

 State Pop nDist Pop/nDist
 Alabama 4802982 7 686140

 Alaska 721523 1 721523

 Arizona 6412700 9 712522

 Arkansas 2926229 4 731557

 California 37541989 53 708339

 Colorado 5044930 7 720704

Connecticut 3581628 5 716325

 Delaware 900877 1 900877

 Florida 18900773 27 700028

 etc

What?

The Polygon Averaging Problem

 Given a polygon, connect the
midpoints of the sides. This gives a new

polygon. Repeat many times.

A Random Pentagon

The Side Midpoints

Connect the Midpoints

The Polygon Untangles Itself
and Heads Towards an Ellipse

What?

The Median Filtering Problem

 Visit each pixel in a picture and replace
its value by the median value of its
“neighbors”.

A Picture With Dirt Specks

After Median Filtering is Applied

Why?

Each Problem has a couple of Python

“nuggets” to practice with.

Each problem has something to “say” about
averaging.

Each problem has a high-level “message”

A Nice Way to Wrap Up

The Apportionment
Problem

The Apportionment Problem

How do you distribute 435 Congressional seats

among the 50 states so that the ratio of population

to delegation size is roughly the same from state

to state?

Quite possibly one of the greatest division problems
of all time!

Notation

Number of states: n

State populations: p[0],…,p[n-1]

State delegation size: d[0],…,d[n-1]

Total Population: P

Total number of seats: D

Ideal: Equal Representation

Number of states: n

State populations: p[0],…,p[n-1]
State delegation size: d[0],…,d[n-1]

Total Population: P
Number of seats: D

]49[

]49[
...

]0[

]0[

d

p

d

p

D

P

27.13 435
309239463

19421055
: NY

D
P

kp
kd

][
][

i.e.,

And so for NY in 2010..

But delegation size must be a whole number!!!

More Realistic…

]49[

]49[
...

]0[

]0[

d

p

d

p

D

P

Number of states: n

State populations: p[0],…,p[n-1]
State delegation size: d[0],…,d[n-1]

Total Population: P
Number of seats: D

An Apportionment Method determines

delegation sizes d[0],…,d[49] that are

whole numbers so that representation

is approximately equal:

]49[

]49[
...

]0[

]0[

d

p

d

p

Definition

How it Is Done

Think in terms of dealing cards.

You are the dealer.

You have 435 cards to deal to 50 people.

At the Start

Everybody gets one card…

N = 435

d = []

for k in range(50):

 d.append(1)

 N = N-1

Every state has at least one congressional district

Dealing out the Rest…

while N > 0:

 Let k be the index of that state

 which is most deserving of an

 additional district.

 # Increase that state’s delegation

 d[k] += 1

 # Decrease what’s left to deal

 N = N-1

Several reasonable definitions of “most deserving.”

The Method of Small Divisors

At this point in the “card game” deal a

district to the state having the largest

quotient

Tends to favor big states

][

][

kd

kp

Implementation
def smallDivisor(p,d):

 “““ returns an int j with the

 property that p[j]/d[j] is max.

 PreC:p and d are length-50 arrays

 of ints and the d-entries are pos.

 ”””

 m = 0

 for k in range(50):

 if p[k]/d[k] >= m

 m = p[k]/d[k]

 j = k

 return j

 This is the old “Look for a max” problem

Dealing out the Rest…

while N > 0:

 k = smallDivisors(p,d)

 # Increase that state’s delegation

 d[k] += 1

 # Decrease what’s left to deal

 N = N-1

Several reasonable definitions of “most deserving.”

The Method of Large Divisors

At this point in the “card game” deal a

district to the state having the largest

quotient

Tends to favor small states

1)(

)(

kd

kp

Dealing out the Rest…

while N > 0:

 k = largeDivisors(p,d)

 # Increase that state’s delegation

 d[k] += 1

 # Decrease what’s left to deal

 N = N-1

The Method of Major Fractions

At this point in the “card game” deal a

district to the state having the largest

value of

Compromise via the Arithmetic Mean

1)(

)(

)(

)(

kd

kp

kd

kp

2

1

Several reasonable definitions of “most deserving.”

Dealing out the Rest…

while N > 0:

 k = majorFractions(p,d)

 # Increase that state’s delegation

 d[k] += 1

 # Decrease what’s left to deal

 N = N-1

The Method of Equal Proportions

At this point in the “card game” deal a

district to the state having the largest

value of

Compromise via the Geometric Mean

1)(

)(
*

)(

)(

kd

kp

kd

kp
This method

is in use

today.

Dealing out the Rest…

while N > 0:

 k = equalProportions(p,d)

 # Increase that state’s delegation

 d[k] += 1

 # Decrease what’s left to deal

 N = N-1

Four Different Ways to
Compute “Most Deserving”

And two different ways to compute an average

1)(

)(
*

)(

)(

kd

kp

kd

kp

1)(

)(

)(

)(

kd

kp

kd

kp

2

1

1)(

)(

kd

kp

)(

)(

kd

kp

Takeaway: There is a
Subjective Component to

Math+Computing

One can design more equitable methods

for apportionment, but they are

complicated and cannot be “sold” to

the lay public.

Another Division Problem

Gerrymandering:
The Art of
drawing
district
boundaries
so as to
favor
incumbents

Polygon Averaging

Connect the Midpoints

A Useful Class

class polygon:

 def __init__(self,x,y):

 self.x = x

 self.y = y

x and y are numpy arrays that name
the vertices of the polygon:

(x[0],y[0]),…,(x[n-1],y[n-1])

The New Polygon

def newPoly(self):

 n = len(self.x); x = zeros(n);y = zeros(n)

 for k in range(n):

 # Get the next midpoint.

 j = (k+1)%n

 x[k] = (self.x[k]+self.x[j])/2

 y[k] = (self.y[k]+self.y[j])/2

 self.x = x

 self.y = y

Order From Chaos

1. Pick n, say n= 30

2. Generate random lists of floats x and y

3. P = polygon(x,y)

4. Then repeatedly replace P by with a new

 polygon obtained by connecting midpoints:

 for i in range(200):

 P.newPolygon()

 P.plotPoly()

The Polygon Untangles Itself
and Heads Towards an Ellipse

At the Start After 40
iterations

After 200
iterations

It’s About Repeated Averaging

A midpoint is the average of the endpoints.

(a,b)

(c,d)

((a+c)/2,(b+d)/2)

Median Filtering

 Pictures as Arrays

A black and white picture can be encoded
as a 2-dimensional array of numbers

Typical:

 0 <= A[i,j] <= 255

 (black) (white)

Values in between correspond to different
levels of grayness.

1458-by-2084

 150 149 152 153 152 155

 151 150 153 154 153 156

 153 151 155 156 155 158

 154 153 156 157 156 159

 156 154 158 159 158 161

 157 156 159 160 159 162

 Just a Bunch of Numbers

1458-by-2084

 150 149 152 153 152 155

 151 150 153 154 153 156

 153 2 3 156 155 158

 154 2 1 157 156 159

 156 154 158 159 158 161

 157 156 159 160 159 162

 Dirt!

Note how the
“dirty pixels”
look out of place

Can We Filter Out the “Noise”?

1458-by-2084

 150 149 152 153 152 155

 151 150 153 154 153 156

 153 ? ? 156 155 158

 154 ? ? 157 156 159

 156 154 158 159 158 161

 157 156 159 160 159 162

 Idea

Assign “typical”
neighborhood
gray values to
 “dirty pixels”

Getting Precise

“Typical neighborhood gray values”

Could use
Median

Or
Mean

radius 1
radius 3

We’ll look at “Median Filtering” first…

Median Filtering

Visit each pixel.

Replace its gray value by the median

of the gray values in the “neighborhood”.

Using a radius 1 “Neighborhood”

6

7

6

7

6

7

7

6

6

6

7

6

7

0

7

7

6

6

Before After

0

6

6

6

6

7

7

7

7

How to Visit Every Pixel

m = 9

n = 18

for i in range(m):

 for j in range(n):

 Compute new gray value for pixel (i,j).

i = 0

j = 0

Original:

Filtered:

Replace with the median of the values under the window.

i = 0

j = 1

Original:

Filtered:

Replace with the median of the values under the window.

i = 0

j = 2

Original:

Filtered:

Replace with the median of the values under the window.

i = 0

j = n-1

Original:

Filtered:

Replace with the median of the values under the window.

i = 1

j = 0

Original:

Filtered:

Replace with the median of the values under the window.

i = 1

j = 1

Original:

Filtered:

Replace with the median of the values under the window.

i = m-1

j = n-1

Original:

Filtered:

Replace with the median of the values under the window.

What We Need…

(1) A function that computes the median
value in a 2-dimensional array C:

 m = medVal(C)

(2) A function that builds the filtered
image by using median values of radius r
neighborhoods:

 B = medFilter(A,r)

Medians vs Means

A =

 150 151 158 159 156

 153 151 156 155 151

 150 155 152 154 159

 156 154 152 158 152

 152 158 157 150 157

Median = 154 Mean = 154.2

Medians vs Means

A =

 150 151 158 159 156

 153 151 156 155 151

 150 155 0 154 159

 156 154 152 158 152

 152 158 157 150 157

Median = 154 Mean = 148.2

Back to Filtering…

m = 9

n = 18

for i in range(m):

 for j inrange(n)

 Compute new gray value for pixel (i,j).
 end

end

B = medFilter(A)

Original

What About Using the Mean
instead of the Median?

Replace each gray value with the

average gray value in the radius r

neighborhood.

Mean Filter with r = 3

Mean Filter with r = 10

Why it Fails

 150 149 152 153 152 155

 151 150 153 154 153 156

 153 2 3 156 155 158

 154 2 1 157 156 159

 156 154 158 159 158 161

 157 156 159 160 159 162

85 86

87 88

The mean does not
capture representative
values.

And Median Filters Leave
Edges (Pretty Much) Alone

 200 200 200 200 200 200

 200 200 200 200 200 100

 200 200 200 200 100 100

 200 200 200 100 100 100

 200 200 100 100 100 100

 200 100 100 100 100 100

Inside the box, the 200’s stay at 200
and the 100’s stay at 100.

Takeaways

Image processing is all about operations

on 2-dimensional arrays.

Simple operations on small patches are

typically repeated again and again

There is a profound difference between the

median and the mean when filtering noise

