
4/14/2015

1

21. Designing & Using Classes

Topics:
 Methods
 getters and setters
 class invariants
 More on assert and isinstance
 Sorting w.r.t. an Attribute
 Class Variables

Methods

s.upper(),s.find(s1),s.count(s2),

s.append(s2), s.split(c), etc

Methods are functions that are defined
inside a class definition.

We have experience using them with strings

and lists

L.append(x),L.extend(x),L.sort(),etc

Methods

Now we show how to implement them.

We will revisit the Point class that we
used earlier, and define methods for
computing distance and midpoints.

Anticipate this:

 delta = P.Dist(Q)
 C = A.Midpoint(B)

The dot notation
syntax for method
calls

class Point:

 """

 Attributes:

 x: float, the x-coordinate of a point

 y: float, the y-coordinate of a point

 d: float, distance to origin

 """

 def __init__(self,x,y):

 self.x = x

 self.y = y

 self.d = sqrt(x**2+y**2)

The Point Class

The constructor

Assume proper importing from math class

class Point:

 def __init__(self,x,y):

 self.x = x

 self.y = y

 self.d = sqrt(x**2+y**2)

 def Dist(self,other):

 """ Returns the distance from

 self to P

 PreC: other is a point

 """

 dx = self.x - other.x

 dy = self.y - other.y

 return sqrt(dx**2+dy**2)

A Simple Method: Dist Using the Dist Method

>>> P = Point(3,4)

>>> Q = Point(6,8)

>>> deltaPQ = P.Dist(Q)

>>> deltaQP = Q.Dist(P)

>>> print deltaPQ,deltaQP

5.0 5.0

Let’s create two point objects and compute
the distance between them. This can
be done two ways…

The usual
“dot” notation
for invoking
a method

4/14/2015

2

class Point:

 def __init__(self,x,y):

 self.x = x

 self.y = y

 self.d = sqrt(x**2+y**2)

 def Midpoint(self,0ther):

 """ Returns the midpoint of the

 line segment that connects self

 to other

 PreC: other is a point

 """

 xm = (self.x + other.x)/2.0

 ym = (self.y + other.y)/2.0

 return Point(xm,ym)

A Simple Method: Midpoint

A class
method
can call the
class
constructor

Using the Midpoint Method

>>> P = Point(1,2)

>>> Q = Point(3,4)

>>> MPQ = P.Midpoint(Q)

>>> MQP = Q.Midpoint(P)

>>> print MPQ

(2.000, 3.000) distance = 3.606

>>> print MQP

(2.000, 3.000) distance = 3.606

Let’s create two point objects and compute
the midpoint. This can be done two ways…

Recall: __str__(self)

def __str__(self):

 s = '(%6.3f,%6.3f) distance = %6.3f‘

 %(self.x,self.y,self.d)

With this method in place, we have a
handy way of “printing out” an object:

>>> P = Point(3,4)

>>> print P

(3.000, 4.000) distance = 5.000

class Point:

 :

 def Dist(self,other):

 """ Returns the distance from

 self to other

 PreC: other is a point

 """

 dx = self.x - other.x

 dy = self.y - other.y

 return sqrt(dx**2+dy**2)

Method Implementation:
Syntax Concerns

Note indentation.
A class method is part of the class definition.

class Point:

 :

 def Dist(self,other):

 """ Returns the distance from

 self to P

 PreC: P is a point

 """

 dx = self.x - other.x

 dy = self.y - other.y

 return sqrt(dx**2+dy**2)

Method Implementation:
Syntax Concerns

Note the use of “self”.
It is always the first argument of a method.

class Point:

 :

 def Dist(self,other):

 """ Returns the distance from

 self to P

 PreC: P is a point

 """

 dx = self.x - other.x

 dy = self.y - other.y

 return sqrt(dx**2+dy**2)

Method Implementation:
Syntax Concerns

Think like this: “We are going to apply the method
dist to a pair of Point objects, self and other.”

4/14/2015

3

def Dist(self,other):

 dx = self.x - other.x

 dy = self.y - other.y

 D = sqrt(dx**2+dy**2)

 return D

Methods and (Regular) Functions

def Dist(P,Q):

 dx = P.x - Q.x

 dy = P.y - Q.y

 D = sqrt(dx**2+dy**2)

 return D

>>> P = Point(3,4)

>>> Q = Point(6,8)

>>> P.Dist(Q)

5.0

>>> P = Point(3,4)

>>> Q = Point(6,8)

>>> Dist(Q,P)

5.0

Visualizing a Method Call
Using State Diagrams

P = Point(3,4)

Q = Point(6,8)

D = P.Dist(Q)

Let’s see what happens when we execute
the following:

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 5 d

 P

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 5 d

 6 x

 8 y

 Point

 10 d

 P Q

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 5 d

 6 x

 8 y

 Point

 10 d

 P Q

 dx = self.x-other.x

 dy = self.y-other.y

 z = sqrt(dx**2+dy**2)

 return z

 self other

Dist

class Point:

 :

 def Dist(self,other):

 """ Returns the distance from

 self to P

 PreC: other is a point

 """

 dx = self.x - other.x

 dy = self.y - other.y

 return sqrt(dx**2+dy**2)

 Method: Dist

Think of self and other as input parameters.

4/14/2015

4

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 5 d

 6 x

 8 y

 Point

 10 d

 P Q

 dx = self.x-other.x

 dy = self.y-other.y

 z = sqrt(dx**2+dy**2)

 return z

 self other -3 dx:

Control passes to
the method Dist

Dist

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 5 d

 6 x

 8 y

 Point

 10 d

 P Q

 dx = self.x-other.x

 dy = self.y-other.y

 z = sqrt(dx**2+dy**2)

 return z

 self other -3 dx: -4 dy:

Dist

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 5 d

 6 x

 8 y

 Point

 10 d

 P Q

 dx = self.x-other.x

 dy = self.y-other.y

 z = sqrt(dx**2+dy**2)

 return z

 self other -3 dx: -4 dy: z: 5

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 5 d

 6 x

 8 y

 Point

 10 d

 P Q

 dx = self.x-other.x

 dy = self.y-other.y

 z = sqrt(dx**2+dy**2)

 return z

 self other -3 dx: -4 dy: z: 5

5 D:

Dist

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 5 d

 6 x

 8 y

 Point

 10 d

 P Q 5 D:

Let’s Turn Our Attention
to Some Software Engineering
Issues that Relate to Classes

4/14/2015

5

Motivation

This becomes increasingly important
as the problems get bigger and multiple
software developers are on the scene.

At the CS 1110 level, we begin to practice
these habits and motivate their relevance.

Setter and Getter Methods

Motivation:
 Changing the attributes
 of an object by “freely’ ’ using the
 dot-notation is dangerous and short
 sighted.

>>> P = Point(3,4)

>>> P.x = 0

>>> print P

(0.000, 4.000) distance = 5.000

 The “class invatiant” that sqrt(P.x**2 + P.y**2) == P.d is broken

Getter Methods

def get_x(self):

 return self.x

def get_y(self):

 return self.y

def get_d(self):

 return self.d

Access attributes through getter methods.

Typically name these simple
methods in this style.

>>> P = Point(3,4)

>>> a = P.get_x()

>>> b = P.get_y()

>>> c = P.get_d()

>>> print a,b,c

3.0 4.0 5.0

Getter Methods—Why?

def get_x(self):

 return self.x

def get_y(self):

 return self.y

def get_d(self):

 return self.d

Access attributes through getter methods.

You don’t want the user to “see”
and work with attributes.

>>> P = Point(3,4)

>>> a = P.get_x()

>>> b = P.get_y()

>>> c = P.get_d()

>>> print a,b,c

3.0 4.0 5.0

Setter Methods

def set_x(self,x):

 self.x = x

 self.d = sqrt(self.x**2+self.y**2)

def set_y(self,y):

 self.y = y

 self.d = sqrt(self.x**2+self.y**2)

>>> P = Point(3,4)

>>> P.set_x(0)

>>> print P

(0.000, 4.000) distance = 4.000

>>> P = Point(3,4)

>>> P.x = 0

>>> P.d = sqrt(P.x**2+P.y**2)

>>> print P

(0.000, 4.000) distance = 4.000

Setter Methods—Why?

>>> P = Point(3,4)

>>> P.set_x(0)

>>> print P

(0.000, 4.000) distance = 4.000

Automatically maintains the
required connection among
the x, y, and d attributes

Requires programmer attentiveness.
Don’t forget to update P.d!

Good:

Bad:

4/14/2015

6

Setter Methods Justification-
A Tale of Two Software

Engineers

def __init__(self,x,y):

 self.x = x

 self.y = y

 self.d = sqrt(x**2+y**2)

Bob and Sue each develop a Point class
with this constructor:

Sue uses setter methods. Bob does not.

Setter Methods Justification-
A Tale of Two Software

Engineers

P.x = blahblah

P.d = sqrt(P.x**2+P.y**2)

Bob is very successful. Tons of python
code is written that uses his stuff. Millions
of references like this are out there:

But then…

Setter Methods Justification-
A Tale of Two Software

Engineers

One day Bob’s boss says “we have a new
definition of distance. Instead of

 sqrt(x**2+y**2)

we now have to use

 abs(x) + abs(y)

Bob must direct customers to change those millions of
P.d updates to reflect the new definition of distance.

Setter Methods Justification-
A Tale of Two Software

Engineers

One the other hand, to maintain Sue’s
software, the customers just have change
one line of code in the constructor:

def __init__(self,x,y):

 self.x = x

 self.y = y

 self.d = abs(x)+abs(y)

Sue’s Setter Is Modified

 def set_x(self,x):

 self.x = x

 self.d = sqrt(self.x**2+self.y**2)

def set_y(self,y):

 self.y = y

 self.d = sqrt(self.x**2+self.y**2)

Before…

Sue’s Setter Is Modified

 def set_x(self,x):

 self.x = x

 self.d = abs(self.x)+abs(self.y)

def set_y(self,y):

 self.y = y

 self.d = abs(self.x)+abs(self.y

After…

4/14/2015

7

 Moral:

Bob is moved to an interior
cubical

with no window!

Reminder about assert
and isinstance

Using Assert in the Class
Setting

The usual check-the-preconditions business

def __init__(self,x,y):

 Bx = type(x)==float or type(x)==int

 assert Bx, ‘x must be a number’

 By = type(y)==float or type(y)==int

 assert By,'y must be a number‘

 self.x = x

 self.y = y

 self.d = sqrt(x**2+y**2)

Using isinstance in a
 Class Setting

The function isinstance can be use to check for user-defined types

def Midpoint(self,P):

 B = isinstance(P,Point)

 assert B,'P must be a Point'

 xm = (self.x+P.x)/2.0

 ym = (self.y+P.y)/2.0

 return Point(xm,ym)

Sorting Lists of Objects

A Sorting Problem

Suppose we have a list of Points, i.e., a
list of references to Point objects.

Let’s sort the list based on distance
from origin.

It involves writing a getter function.

4/14/2015

8

Before

L:

 3 x

 5

 y

 Point

 1 x

 0 y

 Point

 2 x

 1 y

 Point

 4

 1 d d 2.3 d

After

L:

 1 x

 1

 y

 Point

 2 x

 1 y

 Point

 3 x

 4 y

 Point

 0

 2.3 d d 5 d

How to Do It

Write a “getter” function that takes a point and
returns the value of its d attribute:

 def getD(P):
 return P.d

Now use the sort method as follows

 L.sort(key = getD)

This will permute the references in L so that they refer
to point objects in the required order, i.e., in order of
distance from origin.

A New Example
to Illustrate the Notion

of a Class Variable

Class Variables

Class variables are shared among
all instances of the class.

We illustrate with an example.

Then we will formally distinguish between
class variables and instance variables

The Class SimpleDate

We define a class that can be used
to carry out certain computations with
dates. For example:

1. Cornell was founded on 4/27/1865. Today
is 4/14/2015. How many days has Cornell
been around?

2. What’s the date 1000 days from now?

4/14/2015

9

Before We Begin

def isLeapYear(y):

 “““ Returns True if y is a leap year.

 Otherwise returns False

 ”””

1. A “date string”looks like this: ‘4/14/2015’ .

2. Assume the availability of

y is not a century year and is divisible by 4
or
y is a century year and is divisible by 400.

Four Attributes

Creating a SimpleDate Object:

 D = SimpleDate(‘4/14/2015’)

m: int, index of month

d: int, the day

y: int, the year

s: str, a date string

Visualizing a SimpleDate

>>> D = SimpleDate(‘4/14/2015’)

D 4 m

 14 d

 SimpleDate

 2015 y

 ‘4/14/2015’ s

Methods in SimpleDate

__str__(self)

 pretty prints the date encoded

 in self

Tomorrow(self)

 returns a SimpleDate object that

 encodes the day after self

dateIndex(self)

 returns number of days from 1/1/1600

 to the date encoded in self

FutureDate(self,n)

 returns the SimpleDate encoding of

 the date that is n days after self

The Method Tomorrow

>>> D = SimpleDate(‘4/14/2015’)

>>> T = D.Tomorrow()

>>> print T

April 15, 2014

D

 4 m

 14 d

 SimpleDate

 2015 y

 ‘4/14/2015’ s

 4 m

 15 d

 SimpleDate

 2015 y

 ‘4/15/2015’ s

T Pretty printing
via __str__

Useful Class Variables

TheMonths =['','January','February','March',

 'April','May','June','July',

 'August','September','October',

 'November','December']

nDays =[0,31,28,31,30,31,30,31,31,30,31,30,31]

These variables house handy data:

Methods can access this data via self and the dot notation,
e.g.,
 self.TheMonths[self.m]

4/14/2015

10

Visualizing the Overall Class

class SimpleDate:

 TheMonths = blah

 nDays = blah

def blah blah

def blah blah

def blah blah

Methods

Class Variables

Referencing a Class Variable

def Tomorrow(self):

 m = self.m

 d = self.d

 y = self.y

 Last = self.nDays[m]

 if isLeapYear(y) and m==2:

 Last+=1

 :

nDays =[0,31,28,31,30,31,30,31,31,30,31,30,31]

Creating and Printing a
SimpleDate Object

>>> Today = SimpleDate('4/14/2015')

>>> print Today

April 14, 2015

>>> T = Today.Tomorrow()

>>> print T

April 15, 2015

The isequal Method

def isequal(self,other):

 B1 = self.m == other.m

 B2 = self.d == other.d

 B3 = self.y == other.y

 return B1 and B2 and B3

Can be used to check if two SimpleDate objects
represent the same date.

Method dateIndex

def dateIndex(self):

 idx = 1

 Day = SimpleDate('1/1/1600')

 while not Day.isequal(self):

 idx+=1

 Day = Day.Tomorrow()

 return idx

1 = Jan 1 , 1600. Count forward from this baseline

How Old is Cornell in Days?

>>> Today = SimpleDate('4/14/2015')

>>> nToday = Today.dateIndex()

>>> Founding = SimpleDate('4/27/1865')

>>> nFounding = Founding.dateIndex()

>>> CornellDays = nToday-nFounding

>>> print CornellDays

54773

