21. Designing \& Using Classes

Topics:

Methods
getters and setters
class invariants
More on assert and isinstance Sorting w.r.t. an Attribute Class Variables

Methods

Now we show how to implement them.
We will revisit the Point class that we used earlier, and define methods for computing distance and midpoints.

Anticipate this:

```
delta = P.Dist(Q)
C = A.Midpoint(B)
```


Methods

Methods are functions that are defined inside a class definition.

We have experience using them with strings
s.upper(),s.find(s1),s.count(s2),
s.append(s2), s.split(c), etc
and lists
L. append (x), L. extend (x), L. sort (), etc

The Point Class

class Point:

"""
Attributes:
\mathbf{x} : float, the x -coordinate of a point
y : float, the y-coordinate of a point
d: float, distance to origin
def __init__(self,x,y):
self. $\mathbf{x}=\mathbf{x} \quad$ The constructor
self. $y=y$
self. $d=\operatorname{sqrt}(x * * 2+y * * 2)$

Assume proper importing from math class

A Simple Method: Dist

```
class Point:
    def init (self,x,y):
        self.x = x
        self.y = y
        self.d = sqrt(x**2+y**2)
    def Dist(self,other):
        """ Returns the distance from
        self to P
        PreC: other is a point
        """
        dx = self.x - other.x
        dy = self.y - other.y
        return sqrt(dx**2+dy**2)
```


Using the Dist Method

Let's create two point objects and compute the distance between them. This can be done two ways...

```
>>> P = Point (3,4)
>> Q = Point (6,8)
>>> deltaPQ = P.Dist(Q)
>>> deltaQP = Q.Dist(P)
>>> print deltaPQ,deltaQP
5.0 5.0
```


A Simple Method: Midpoint

```
class Point:
    def __init__(self,x,y):
            self.x = x
            self.y = y
            self.d = sqrt(x**2+y**2)
```

 def Midpoint(self, 0 ther) :
 """ Returns the midpoint of the
 line segment that connects self
 to other
 PreC: other is a point
 "" \("\)
 \(\mathbf{x m}=(\operatorname{self} . \mathbf{x}+\) other. \(\mathbf{x}) / 2.0 \quad \begin{aligned} & \text { meth call the } \\ & \text { can }\end{aligned}\)
 \(\mathrm{ym}=(\operatorname{self} . \mathrm{y}+\) other. y\() / 2.0\) class
 return Point (\(x \mathrm{~m}, \mathrm{ym}\))
 can ca
 class
cons

Recall: \qquad str \qquad (self)

```
def __str__(self):
    s='(%\overline{6.3}}\textrm{f},%6.3\textrm{f})\quad\mathrm{ distance = %6.3f
        %(self.x,self.y,self.d)
```

With this method in place, we have a handy way of "printing out" an object:
$\ggg P=\operatorname{Point}(3,4)$
>>> print P
$(3.000,4.000)$ distance $=5.000$

Method Implementation: Syntax Concerns

```
class Point:
```

```
:
def Dist(self,other):
""" Returns the distance from
self to \(P\)
PreC: \(P\) is a point
"""
\(\mathrm{dx}=\) self. x - other. x
\(d y=\) self. \(y\) - other. \(y\)
return \(\operatorname{sqr} t(d x * * 2+d y * * 2)\)
```

Note the use of "self".
It is always the first argument of a method.

Using the Midpoint Method

Let's create two point objects and compute the midpoint. This can be done two ways...

```
>>> P = Point (1,2)
>> Q = Point (3,4)
>>> MPQ = P.Midpoint(Q)
>>> MQP = Q.Midpoint(P)
>>> print MPQ
(2.000,3.000) distance = 3.606
>>> print MQP
(2.000, 3.000) distance = 3.606
```


Method Implementation: Syntax Concerns

```
class Point:
```

 def Dist(self,other):
 """ Returns the distance from
 self to other
 PreC: other is a point
 """
 \(\mathrm{dx}=\) self. x - other. x
 dy \(=\) self. \(y\) - other. \(y\)
 return \(\operatorname{sqr} t(d x * * 2+d y * * 2)\)
 Note indentation.
 A class method is part of the class definition.

Method Implementation: Syntax Concerns

class Point:

def Dist(self,other):
""" Returns the distance from
self to P
PreC: P is a point
"""
$\mathrm{d} \mathbf{x}=$ self. $\mathrm{x}-$ other. x
$d y=$ self. y - other. y
return $\operatorname{sqr} t(d x * * 2+d y * * 2)$
Think like this: "We are going to apply the method dist to a pair of Point objects, self and other."

Methods and (Regular) Functions

def Dist(self,other): $\mathrm{dx}=$ self. x - other. x dy = self. y - other. y $\mathrm{D}=\operatorname{sqrt}\left(\mathrm{dx} * * 2+\mathrm{dy} \mathrm{y}^{*} 2\right)$ return D
>> $P=\operatorname{Point}(3,4)$ $\ggg Q=\operatorname{Point}(6,8)$
>>> P.Dist (Q)
5.0
def Dist(P, Q) :
$\mathrm{dx}=\mathrm{P} . \mathrm{x}-\mathrm{Q} . \mathrm{x}$
$\mathrm{dy}=\mathrm{P} . \mathrm{y}-\mathrm{Q} . \mathrm{y}$
$\left.\mathrm{D}=\mathrm{sqrt}\left(\mathrm{dx} * * 2+\mathrm{dy} \mathrm{y}^{*}\right)^{2}\right)$ return D

```
>>> P = Point(3,4)
>>> Q = Point( (6,8)
>>> Dist(Q,P)
5.0
```


Visualizing a Method Call

P	$=\operatorname{Point}(3,4)$
Q	$=\operatorname{Point}(6,8)$
D	$=\operatorname{P.Dist}(Q)$

Visualizing a Method Call Using State Diagrams

Let's see what happens when we execute the following:

```
P = Point(3,4)
Q = Point (6,8)
D = P.Dist(Q)
```

Visualizing a Method Call

$$
\begin{aligned}
P & =\operatorname{Point}(3,4) \\
Q & =\operatorname{Point}(6,8) \\
D & =\operatorname{P.\operatorname {Dist}(Q)}
\end{aligned}
$$

Method: Dist

class Point:

def Dist(self,other):
""" Returns the distance from self to P
PreC: other is a point
"""
$d x=$ self. x - other. x
$d y=$ self. y - other. y
return sqrt(dx**2+dy**2)

Think of self and other as input parameters

Visualizing a Method Call

$$
\begin{aligned}
P & =\operatorname{Point}(3,4) \\
Q & =\operatorname{Point}(6,8) \\
\bullet D & =\operatorname{Pr} \text { Dist (Q) }
\end{aligned}
$$

Visualizing a Method Call

Visualizing a Method Call

P	$=\operatorname{Point}(3,4)$
Q	$=\operatorname{Point}(6,8)$
D	$=\operatorname{P} . \operatorname{Dist}(Q)$

Motivation

This becomes increasingly important as the problems get bigger and multiple software developers are on the scene.

At the CS 1110 level, we begin to practice these habits and motivate their relevance.

Getter Methods

Access attributes through getter methods.
>>> $P=\operatorname{Point}(3,4)$
>> a = P.get $x()$
>>> b = P.get_y()
>>> c = P.get_d()
>> print a, b, c
3.04 .05 .0
retürn self.x
def get_y(self):
return self.y
def get_d(self):
return self.d

```
```

```
def get_x(self):
```

```
```

def get_x(self):

```

Typically name these simple methods in this style.
methods in this style.

\section*{Setter and Getter Methods}

\section*{Motivation:}

Changing the attributes
of an object by "freely" using the dot-notation is dangerous and short sighted.
```

>>> P = Point(3,4)

```
>>P P.x = 0
>>> print \(P\)
\((0.000,4.000)\) distance \(=5.000\)

The "class invatiant" that \(\operatorname{sqrt}\left(P x^{\star *} 2+P . y^{\star \star} 2\right)==P . d\) is broken

\section*{Getter Methods-Why?}

Access attributes through getter methods.
```

def get_x(self):
return self.x
def get_y(self):
return self.y
def get_d(self):
return self.d

```
>> \(P=\) Point \((3,4)\)
>>> a = P.get_x()
>>> b = P.get_y ()
>>> c = P.get_d()
>>> print \(a, b, c\)
3.04 .05 .0

You don't want the user to "see" and work with attributes.

\section*{Setter Methods}
```

def set_x(self,x):
self.x = x
self.d = sqrt(self.x**2+self.y**2)
def set_y(self,y):
self.y = y
self.d = sqrt(self.x**2+self.y**2)

```
```

>>> P = Point(3,4)
>>> P.set_x(0)
>>> print P
(0.000, 4.000) distance = 4.000

```

Setter Methods-Why?
Good:
\begin{tabular}{lr}
\(\gg P=\) Point \((3,4)\) & \begin{tabular}{l} 
Automatically maintains the \\
required connection among
\end{tabular} \\
the \(x, y\), and dattributes
\end{tabular}

Bad:
>>> \(P=\) Point \((3,4)\) Requires programmer attentiveness.
\(\gg\) P. \(\mathbf{x}=0 \quad\) Don't forget to update P.d
\(\ggg\) P.d \(=\operatorname{sqrt}\left(P \cdot x^{* *} 2+P \cdot y^{* *} 2\right)\)
>>> print \(P\)
\((0.000,4.000)\) distance \(=4.000\)

\section*{Setter Methods JustificationA Tale of Two Software Engineers}

Bob and Sue each develop a Point class with this constructor:
```

def __init__(self,x,y):
self.x = x
self.y=y
self.d = sqrt(x**2+y**2)

```

Sue uses setter methods. Bob does not.

\section*{Setter Methods JustificationA Tale of Two Software Engineers}

One day Bob's boss says "we have a new definition of distance. Instead of
sqrt (x**2+y**2)
we now have to use
\(a b s(x)+a b s(y)\)

Bob must direct customers to change those millions of P.d updates to reflect the new definition of distance.

\section*{Sue's Setter Is Modified}

\section*{Before...}
```

def set_x(self,x):
self.x = x
self.d = sqrt(self.x**2+self.y**2)
def set_y(self,y):
self.y = y
self.d = sqrt(self.x**2+self.y**2)

```

\section*{Setter Methods JustificationA Tale of Two Software Engineers}

Bob is very successful. Tons of python code is written that uses his stuff. Millions of references like this are out there:
```

P.x = blahblah
P.d = sqrt(P.x**2+P.y**2)

```

But then.

\section*{Setter Methods JustificationA Tale of Two Software Engineers}

One the other hand, to maintain Sue's software, the customers just have change one line of code in the constructor:
```

def __init__(self,x,y):

```
    self.x \(=\) x
    self.y = \(y\)
    self.d = abs(x)+abs (y)

Sue's Setter Is Modified

\section*{After.}
```

def set_x(self,x):
self.x = x
self.d = abs(self.x)+abs(self.y)
def set_y(self,y):
self.y = y
self.d = abs(self.x)+abs(self.y

```

\section*{Reminder about assert and isinstance}
```

Using Assert in the Class Setting
def__init__(self,x,y):
Bx = type(x)==float or type(x)==int
assert Bx, 'x must be a number'
By = type(y)==float or type(y) ==int
assert By,'y must be a number'
self.x = x
self.y=y
self.d = sqrt(x**2+y**2)

```
        The usual check-the-preconditions business

Using isinstance in a Class Setting
def Midpoint(self, P) :
\(B=\) isinstance ( \(P\), Point)
assert \(B, ' P\) must be a Point'
\(x \mathrm{~m}=(\) self. \(\mathrm{x}+\mathrm{P} . \mathrm{x}) / 2.0\)
\(y_{m}=(\) self. \(y+P \cdot y) / 2.0\)
return Point(xm,ym)

The function isinstance can be use to check for user-defined types

\section*{A Sorting Problem}

Suppose we have a list of Points, i.e., a list of references to Point objects.

Let's sort the list based on distance from origin.

It involves writing a getter function.


\section*{How to Do It}

Write a "getter" function that takes a point and returns the value of its \(d\) attribute:
```

def getD(P):

```
    return P.d

Now use the sort method as follows
L. sort (key \(=\) getD \()\)

This will permute the references in \(L\) so that they refer to point objects in the required order, i.e., in order of distance fromorigin.

\section*{A New Example to Illustrate the Notion of a Class Variable}

\section*{Class Variables}

Class variables are shared among all instances of the class.

We illustrate with an example.
Then we will formally distinguish between class variables and instance variables

\section*{The Class SimpleDate}

We define a class that can be used to carry out certain computations with dates. For example:
1. Cornell was founded on \(4 / 27 / 1865\). Today is \(4 / 14 / 2015\). How many days has Cornell been around?
2. What's the date 1000 days from now?

\section*{Before We Begin}
1. A "date string"looks like this: '4/14/2015'.
2. Assume the availability of
\[
\text { def isLeapYear }(\mathrm{y}) \text { : }
\]
""" Returns True if \(y\) is a leap year. Otherwise returns False
"""
\(y\) is not a century year and is divisible by 4 or
\(y\) is a century year and is divisible by 400.

Visualizing a SimpleDate

>> D = SimpleDate ('4/14/2015')

\section*{Four Attributes}
m: int, index of month
d: int, the day
y : int, the year
s: str, a date string

Creating a SimpleDate Object:
```

```
D = SimpleDate('4/14/2015')
```

```
```

```
D = SimpleDate('4/14/2015')
```

```

\section*{Methods in SimpleDate}

pretty prints the date encoded in self
Tomorrow (self)
returns a SimpleDate object that encodes the day after self
dateIndex (self)
returns number of days from \(1 / 1 / 1600\)
to the date encoded in self
FutureDate (self,n)
returns the SimpleDate encoding of
the date that is \(n\) days after self


\section*{Useful Class Variables}

These variables house handy data:

TheMonths =['','January','February','March',
'April','May','June','July',
'August','September','October',
'November', 'December']
nDays \(=[0,31,28,31,30,31,30,31,31,30,31,30,31]\)

Methods can access this data via self and the dot notation, e.g.,
self.TheMonths [self.m]

\section*{Visualizing the Overall Class}

\section*{class SimpleDate:}

TheMonths \(=\) blah nDays = blah def blah blah def blah blah

Methods
def blah blah
Class Variables
Ths
>>> Today \(=\) SimpleDate('4/14/2015')
>>> print Today
April 14, 2015
>>> T = Today.Tomorrow ()
>>> print \(T\)
April 15, 2015

\section*{Method dateIndex}
def dateIndex (self):
\[
i d x=1
\]

Day = SimpleDate ('1/1/1600')
while not Day.isequal (self):
\[
i d x+=1
\]

Day \(=\) Day.Tomorrow ()
return idx
\(1=\operatorname{Jan} 1,1600\). Count forward from this baseline

\section*{The isequal Method}
```

```
def isequal(self,other):
```

```
def isequal(self,other):
    B1 = self.m == other.m
    B1 = self.m == other.m
    B2 = self.d == other.d
    B2 = self.d == other.d
    B3 = self.y == other.y
    B3 = self.y == other.y
    return B1 and B2 and B3
```

```
    return B1 and B2 and B3
```

```

Can be used to check if two SimpleDate objects represent the same date.

\section*{Referencing a Class Variable}
def Tomorrow(self):
\(\mathrm{m}=\) self.m
\(d=s e l f . d\)
\(y=s e l f . y\)
Last = self.nDays [m]
if isLeapYear \((y)\) and \(m==2:\)
Last+=1
nDays \(=[0,31,28,31,30,31,30,31,31,30,31,30,31]\)
    represent the same date.

\section*{How Old is Cornell in Days?}
```

>>> Today = SimpleDate('4/14/2 015')
>>> nToday = Today.dateIndex()
>>> Founding = SimpleDate('4/27/1865')
>>> nFounding = Founding.dateI ndex()
>>> CornellDays = nToday-nFounding
>>> print CornellDays
54773

```
```

