20. Dictionaries

Topics:

Basic dictionary manipulations How they are different from lists Application: Word frequency in the Sonnet Collection

A First Example

$$
\mathrm{D}=\left\{{ }^{\prime} I^{\prime}: 1,^{\prime} \mathrm{V}^{\prime}: 5,^{\prime} \mathrm{X}^{\prime}: 10,^{\prime} \mathrm{L}^{\prime}: 50,{ }^{\prime} \mathrm{C}^{\prime}: 100\right\}
$$

This dictionary has 5 items:

$$
\begin{aligned}
& \prime I^{\prime}: 1 \\
& '^{\prime}: 5 \\
& \mathrm{X}^{\prime}: 10 \\
& \prime \mathrm{~L}^{\prime}: 50 \\
& \mathbf{' C}^{\prime}: 100
\end{aligned}
$$

Keys and Values

$$
D=\left\{{ }^{\prime} I^{\prime}: 1,^{\prime} V^{\prime}: 5,^{\prime} X^{\prime}: 10,^{\prime} L^{\prime}: 50,{ }^{\prime} C^{\prime}: 100\right\}
$$

An item has a key and a value.
For the item 'V':5,
' V ' is the key
5 is the value

Set-Up

D = \{'I':1,'V':5,'X':10,'L':50,'C':100\}

To set up a small dictionary in this style you:

1. Use a colon to separate a key from its value.
2. Separate items with a comma.
3. Enclose the whole thing with curly brackets.

Some Questions

How do you see if a dictionary has a key?
How do you access items in a dictionary?
How can you add an item to a dictionary?
How is a dictionary different from a list?
Are there type-related rules about keys?
Are there type-related rules about values?

Checking to see if a Dictionary Has a Particular Key

Moral: use "in".

Checking if D has a particular Value

Produce a list of all the values in D.
Then use "in" on that list

$$
\begin{aligned}
& \text { >>> } \mathrm{D}=\left\{\text { 'I': }^{\prime}, \mathrm{I}^{\prime}: 5, ' \mathrm{X} ': 10\right\} \\
& \ggg \mathrm{L}=\mathrm{D} \cdot \mathrm{values}(\mathrm{l} \\
& \ggg \mathrm{L} \\
& {[1,10,5]} \\
& \ggg 5 \text { in } \mathrm{L} \\
& \text { True }
\end{aligned}
$$

Extracting a Value

$$
\begin{aligned}
& \text { >>> } D=\{' I ': 1, ' V ': 5, ' X ': 10\} \\
& \text { >>> } a=D\left[' V^{\prime}\right] \\
& \text { >>> } a
\end{aligned}
$$

$$
5
$$

Use square bracket notation.
Use the key not an integer subscript.

Adding an Item to a Dictionary

>>> $D=\{' I ': 1, ' V ': 5, ' X ': 10\}$
>>> $D\left[C^{\prime} \mathrm{C}\right]=100$
>>> D
\{'I': 1, 'X': 10, 'C': 100, 'V': 5\}

Cannot Have Multiple Keys

This modifies an existing item:

$$
\begin{aligned}
& \text { >> } D=\left\{' I^{\prime}: 1, \mathrm{~V}^{\prime}: 5, \mathrm{X}^{\prime}: 10\right\} \\
& \ggg \mathrm{D}[\mathrm{I}]=100 \\
& \gg \mathrm{D} \\
& \left\{' I^{\prime}: 100, \mathrm{X}^{\prime}: 10, \mathrm{~V}^{\prime}: 5\right\}
\end{aligned}
$$

We do not produce

$$
D=\left\{' I ': 1, ' V^{\prime}: 5, ' X^{\prime}: 10, ' I^{\prime}: 100\right\}
$$

Dictionaries are Different From Lists

$$
\begin{aligned}
& \text { >>> D = \{'I':1,'V':5,'X':10,'L':50\} } \\
& \text { >>> D } \\
& \text { \{'I': 1, 'X': 10, 'L': 50, 'V': } 5\}
\end{aligned}
$$

The items in a dictionary are not ordered as in a list.

We see here that Python "shows" a different ordering than how D was set up.

Dictionaries are Different From Lists

Dictionary values are accessed by key not subscript.

$$
\begin{aligned}
& \text { >>> D = \{'I': 1, 'X': 10, 'V': 5\} } \\
& \text { >>> D['X'] } \\
& 10 \\
& \text { Dictionary } \\
& \text { >>> L = [1,5,10] } \\
& \text { Lis } \dagger \\
& \text { >>> L[1] } \\
& 5
\end{aligned}
$$

Dictionaries are Different From Lists

Dictionary values are accessed by key not subscript.

> >>> D = \{'I': 1, 'V': 5, 'X': 10\} >>> D[2]

Traceback (most recent call last): File "<stdin>", line 1, in <module> KeyError: 2

Python is complaining because 2 is not a key in the D

Lists and Dictionaries

$$
\begin{array}{llll}
\mathbf{x}---> & 0--\gg & 3 \\
1 & --\gg & 5 \\
2 & ---> & 1
\end{array}
$$

>>> $x=$ []
>>> x.append (3)
>>> x.append (5)
>>> x.append (1)

$$
\begin{array}{llll}
\mathrm{D}---> & I^{\prime} & --\gg & 1 \\
& & \mathrm{~V}^{\prime} & ---> \\
& & 5 \\
& \mathrm{X}^{\prime} & --\gg & 10
\end{array}
$$

$$
\begin{aligned}
& \gg D=\{ \} \\
& \gg D\left[I^{\prime}\right]=1 \\
& \gg D\left[' V^{\prime}\right]=5 \\
& \ggg D\left[X^{\prime}\right]=10
\end{aligned}
$$

Lists involve mappings from ints to values Dictionaries involve mappings from keys to values

Lists and Dictionaries

$$
\begin{array}{ccc}
\mathbf{x}--\gg & 0--\gg & 3 \\
1 & --\gg & 5 \\
2 & ---> & 1
\end{array}
$$

>>> $x=$ []
>>> x.append (3)
>>> x.append (5)
>>> x.append (1)

$$
\begin{array}{llll}
\text { D }---> & & I^{\prime} & --\gg \\
& & 1 \\
& & V^{\prime} & ---> \\
& & 5 \\
& X^{\prime} & --\gg & 10
\end{array}
$$

$$
\begin{aligned}
& \gg D=\{ \} \\
& \gg D\left[I^{\prime}\right]=1 \\
& \gg D\left[' V^{\prime}\right]=5 \\
& \ggg D\left[' X^{\prime}\right]=10
\end{aligned}
$$

You "add" to a list using the append method You add an item to a dictionary using a "new" key

Lists and Dictionaries

>> L = [] Empty List
>>> L. append (3)
>>> L. append (5)
>>> L. append (1)

$$
\begin{array}{lll}
\text { D ---> } & & I^{\prime} \\
& & ---> \\
& & 1 \\
& V^{\prime} & ---> \\
& & 5 \\
& X^{\prime} & ---> \\
\hline
\end{array}
$$

>>> D = \{\} Empty Dict

$$
\gg D\left[I^{\prime}\right]=1
$$

$$
\ggg D\left[{ }^{\prime} V^{\prime}\right]=5
$$

$$
\gg D\left[{ }^{\prime} \mathrm{X}^{\prime}\right]=10
$$

$$
\begin{aligned}
& \mathrm{L}=[] \text { and } \mathrm{L}=\text { list }() \quad \text { are equivalent } \\
& \mathrm{D}=\{ \} \text { and } \mathrm{D}=\operatorname{dict}() \text { are equivalent }
\end{aligned}
$$

Dictionaries \& Lists

Square Bracket Notation

$$
D\left[{ }^{\prime} x^{\prime}\right] \quad L[2]
$$

The len function

$$
\operatorname{len}(D) \quad \operatorname{len}(L)
$$

So, of course, there are some similarities between lists and dictionaries.

For-Loops and Dictionaries

```
D = {'I':1,'V':5,'X':10,'L':50}
for d in D:
    print d, D[d]
```

I	1
X	10
L	50
V	5

Again, dictionaries are not ordered. So extra steps would need to be taken here for things to be printed in a certain order.

Pretty Printing a Short Dictionary

>>> D = \{'I':1,'V':5,'X':10,'L':50\}
>>> str (D)
"\{'I': 1, 'X': 10, 'L': 50, 'V': 5\}"

Other Examples and Rules

$$
\begin{aligned}
& \text { D1 }=\text { \{ 'red' }:[1,0,0], \text { cyan' }:[0,1,1]\} \\
& \text { D2 = \{1:'one' , 2:'two', 3:'three' \} } \\
& \text { D3 }=\left\{{ }^{\prime} \mathrm{A}^{\prime}: \operatorname{Point}(1,2), \mathrm{B}^{\prime}: \operatorname{Point}(3,4)\right\} \\
& \text { D4 = \{ } \left.{ }^{\prime} A^{\prime}: B^{\prime}, 1: C^{\prime}, \quad D^{\prime}: 2\right\}
\end{aligned}
$$

- Keys must be strings or numbers
- Values can be anything
- Typically the items all "look alike", but not nec.

Some Common Errors

>>> D = \{'I':1,'V':5,'X':10\}
>>> D('I')
Traceback (most recent call last): File "<stdin>", line 1, in <module>

TypeError: 'dict' object is not callable

Square brackets, not parens!

Some Common Errors

>>> D = \{'I': 1, 'X': 10, 'V': 5\}
>>> $x=\mathrm{D}[$ 'L']
Traceback (most recent call last): File "<stdin>", line 1, in <module>

KeyError: 'L'

Trying to access a nonexistent item.
Note: D['L'] = 50 is legal and adds an item to D

A More Involved Dictionary Problem

How many times do each of the following words occur in the Shakespeare Sonnet Collection?

love	sun	moon	sad
happy	thou	me	rain
flowers	water	dude	
Clouds	wonder	forever	

Overall Plan

Use a dictionary D of counters

The keys will be words

The values will be ints that keep track of frequency.

Overall Plan Cont'd

We go through the sonnets word-by-word.
If a word w is already a key, increment the corresponding value, i.e.,

$$
D[w]+=1
$$

If the word w is not a key, then add it to D and initialize its corresponding value, i.e.,

$$
D[w]=1
$$

Sample Output

$D=\{$ 'sun':34, 'moon':5 ','thou':56 \}

This would "say" that there are
34 occurrences of 'sun',
5 occurrences of 'moon', and
56 occurrences of 'thou'.

Updating a Dictionary

$\mathbf{W}=\left[\right.$ 'cat' , mouse' ${ }^{\prime}$ 'dog' ,'cat', rabbit']

$$
\begin{array}{rll}
\text { D }---> & \text { 'cat' } & ---> \\
{ }^{\prime} \mathrm{dog}^{\prime} & ---> & 10
\end{array}
$$

Look at each word in W and update D accordingly

Updating a Dictionary

$\mathrm{W}=[$ 'cat' , mouse' ,' dog' ,'cat', rabbit']

$$
\begin{array}{rll}
\text { D }---> & \text { 'cat' } & ---> \\
{ }^{\prime} \mathrm{dog}^{\prime} & ---> & 10
\end{array}
$$

Before

Look at each word in W and update D accordingly

Updating a Dictionary

$\mathbf{W}=[$ 'cat' , mouse' ,' dog' ,'cat' ,rabbit']

$$
\begin{array}{rll}
\text { D }---> & \text { 'cat' } & ---> \\
& \text { 'dog' } & ---> \\
& 10
\end{array}
$$

After

Look at each word in W and update D accordingly

Updating a Dictionary

$\mathbf{W}=[$ 'cat' , 'mouse' ,' dog' ,' cat' ,' rabbit']

$$
\begin{array}{rll}
\text { D }---> & \text { 'cat' } & ---> \\
& \text { 'dog' } & ---> \\
& 10
\end{array}
$$

Before

Look at each word in W and update D accordingly

Updating a Dictionary

W $=$ ['cat' ,'mouse' ,' dog' ,' cat' ,' rabbit']

$$
\begin{array}{cll}
\text { D }---> & \text { 'cat' } & ---> \\
& \text { 'dog' } & 21 \\
& \text { 'mouse' } & ---\gg \\
& 10 \\
& 1
\end{array}
$$

After

Look at each word in W and update D accordingly

Updating a Dictionary

$\mathrm{W}=\left[{ }^{\prime}\right.$ cat' ,'mouse' ,' dog' ,' cat' ,' rabbit']

$$
\begin{array}{ccc}
\text { D }---> & \text { 'cat' } & ---> \\
& \text { 'dog' } & 21 \\
& \text { 'mouse' } & ---\gg \\
& 10 \\
& 1
\end{array}
$$

Before

Look at each word in W and update D accordingly

Updating a Dictionary

W = ['cat' ,'mouse' ,'dog' ,'cat' ,'rabbit']

$$
\begin{array}{lllr}
\text { D }---> & \text { cat' }^{\prime} & ---> & 21 \\
& { }^{\text {dog' }} & ---> & 11 \\
& \text { 'mouse' } & ---> & 1
\end{array}
$$

After

Look at each word in W and update D accordingly

Updating a Dictionary

$\mathrm{W}=\left[{ }^{\prime}\right.$ cat' ,'mouse' ,' dog' ,' cat' ,' rabbit']

$$
\begin{array}{clll}
\text { D }---> & \text { 'cat' } & ---> & 21 \\
& { }^{\prime} \mathrm{dog}^{\prime} & ---> & 11 \\
& \text { 'mouse' } & ---> & 1
\end{array}
$$

Before

Look at each word in W and update D accordingly

Updating a Dictionary

W $=$ ['cat' ,'mouse' ,' dog' ,' cat' ,' rabbit']

$$
\begin{array}{clll}
\text { D }---> & \text { 'cat' } & ---> & 22 \\
& { }^{\prime} \text { dog' }^{\prime} & ---> & 11 \\
& \text { 'mouse' } & ---> & 1
\end{array}
$$

After

Look at each word in W and update D accordingly

Updating a Dictionary

$W=\left[' c a t ', ' m o u s e^{\prime},{ }^{\prime}\right.$ dog' ,' cat' ,'rabbit']

$$
\begin{array}{llll}
\text { D }---> & \text { 'cat' } & ---> & 22 \\
& { }^{\prime} \text { dog' }^{\prime} & ---> & 11 \\
& \text { 'mouse' } & ---> & 1
\end{array}
$$

Before

Look at each word in W and update D accordingly

Updating a Dictionary

W $=$ ['cat' ,'mouse' ,' dog' ,' cat' ,' rabbit']

$$
\begin{array}{cllr}
\text { D }---> & \text { 'cat' } & ---> & 22 \\
& { }^{\prime} \text { dog' }^{\prime} & ---> & 11 \\
& \text { 'mouse' } & ---> & 1 \\
& & & \text { rabbit' } \\
& ---> & 1
\end{array}
$$

After

Look at each word in W and update D accordingly

From the A6 Module SonnetTools.py we use

GetSonnets ()
Reads all the sonnets from a text file and stores each line in a list of strings
dePunc (s)
Removes all punctuation from string s

The Function GetSonnets ()

Returns a list of strings.
Each string is a sonnet line, or a blank line, or an index line.
>>> L = GetSonnets()
>>> len(L)
2584
>>> L[289]
'XVIII.'
>>> L[291]
"Shall I compare thee to a summer's day?"

The Function dePunc

Removes all punctuation...
>>> s = 'a.b,c?d!f:g;'
>>> $t=$ dePunc (s)
>>> t
'abcdfg'

We Write Three Functions

WordsInLine (s)
Takes a sonnet line and returns a list of its words.
UpdateFreqD (D,w)
Either adds word w to the dictionary of counters D or increments D[w].
MakeFreqD (L)
Returns a dictionary of counters based on
All the sonnets encoded in the list L

Getting the Words in a String

$$
\begin{aligned}
& \text { def } \begin{array}{l}
\text { WordsInLine }(s): \\
s=s . l o w e r() \\
s=\text { dePunc }(s) \\
W=s . s p l i t() \\
\text { return } W
\end{array} .
\end{aligned}
$$

>>> a = 'One, Two, Three. GO!'
>>> WordsInLine (a)
['one', 'two', 'three', 'go']
Returns a list of all the words in s

The split Method

>>> a = 'One Two Three GO'
>>> b = a.split()
$\ggg b$
['One', 'Two', 'Three', 'GO']

Updating a Dictionary of Counters

$$
\begin{gathered}
\text { def UpdateFreqD }(D, s): \\
\text { if } s \text { in } D: \\
D[s]+=1 \\
\text { else: } \\
D[s]=1
\end{gathered}
$$

>>> D = \{'x':10,'y':20,'z':30\}
>>> UpdateFreqD (D,'y')
>> D
\{'y': 21, 'x': 10, 'z': 30\}

Updating D

```
def UpdateFreqD(D,s):
if s in D:
            D[s] +=1
else:
\[
D[s]=0
\]
```

>>> D = \{'x':10,'y':20,'z':30\}
>>> UpdateFreqD (D,'w')
>> D
\{'y': 20, 'x': 10, 'z': 30, 'w': 0\}

Making a Frequency Dictionary

def MakeFreqD (L) :

```
""" L is a list of sonnet line
strings
"/" "
```

D = dict()
for s in L :
W = WordsInLine(s)
\# W is a list of the words
\# in line s
for w in W :
UpdateFreqD (D,w)
return D

Some Frequencies

love	162
sun	11
moon	3
sad	7
happy	11
thou	229
me	164
flowers	7
water	5
dude	0
rain	3
clouds	4
wonder	3
forever	0

