
4/7/2015

1

19. Introduction to Classes

Topics:

 Class Definitions and Objects
 Accessing Attributes
 Copying Objects

 Functions and classes
 Lists of Objects

Motivation

What a Simple Class Definition
Looks Like

class Point:

 """

 Attributes:

 x: float, the x-coordinate of a point

 y: float, the y-coordinate of a point

 """

 def __init__(self,x,y):

 self.x = x

 self.y = y

A class can be used to ̀ `package’’ related data

One Reason for classes:
They Elevate the Level Thinking

>>> P = Point(2,1)

>>> Q = Point(6,4)

>>> d = dist(P,Q)

>>> print d

5 (2,1)

(6,4)

Here, dist is a function that takes
two Points and computes the distance
between them.

>>> P = Point(2,1)

>>> Q = Point(6,4)

>>> d = dist(P,Q)

>>> print d

5 (2,1)

(6,4)

By having a Point class we can think at the
 “point level” instead of at the “xy level”

One Reason for classes:
They Elevate the Level Thinking Classes and Types

Recall that a type is a set of values and

operations that can be performed on those values.

The four basic “built-in” types:

 int, float, str, bool

Classes are a way to define new types

4/7/2015

2

Examples

By suitably defining a rectangle class, we could

say something like

if R1.intersect(R2):

 print ‘Rectangles R1 and R2 intersect’

Examples

By suitably defining a polynomial class, we

could perform operations like

 p = q + r

where q and r are polynomials that are

added together to produce a polynomial p

How to Define a Class

A Point Class

class Point:

 """

 Attributes:

 x: float, the x-coordinate of a point

 y: float, the y-coordinate of a point

 """

 def __init__(self,x,y):

 self.x = x

 self.y = y

A “blue print” for packaging data.
The data will be stored in the attributes.

A Point Class

class Point:

 """

 Attributes:

 x: float, the x-coordinate of a point

 y: float, the y-coordinate of a point

 """

 def __init__(self,x,y):

 self.x = x

 self.y = y

This special function, called a constructor,
does the packaging.

A Point Class

class Point:

 """

 Attributes:

 x: float, the x-coordinate of a point

 y: float, the y-coordinate of a point

 """

 def __init__(self,x,y):

 self.x = x

 self.y = y

The name of this class is “Point”

4/7/2015

3

The ‘’ __init__ ‘’ Function

def __init__(self,x,y):

 """ Creates a Point object

 PreC: x and y are floats

 """

 self.x = x

 self.y = y

That’s a double underscore: __init__

The ‘’ __init__ ‘’ Function

def __init__(self,x,y):

 """ Creates a Point object

 PreC: x and y are floats

 """

 self.x = x

 self.y = y

“self” is always the first argument for any
function defined in a class.

The “ __init__ ‘’ Function

def __init__(self,x,y):

 """ Creates a Point object

 PreC: x and y are floats

 """

 self.x = x

 self.y = y

The attributes are assigned values.

Call the Constructor
to Create an Object

Calling the Constructor

>>> a = 3

>>> b = 4

>>> Q = Point(a,b)

 3 x

 4 y

 Point
Q

 3

 4

a

b

The constructor’ s
name is the name

of the class

Calling the Constructor

>>> a = 3

>>> b = 4

>>> Q = Point(a,b)

 3 x

 4 y

 Point
Q

 3

 4

a

b

This creates
a Point object

4/7/2015

4

Calling the Constructor

>>> a = 3

>>> b = 4

>>> Q = Point(a,b)

 3 x

 4 y

 Point
Q

 3

 4

a

b

The constructor
returns a
reference

Objects: The Folder Metaphor

Manila folders organize data.

Objects organize data.

A point object houses float variables x and y,
called the attributes, where (x,y) is the point.

Objects: The Folder Metaphor

Manila folders organize data.

Objects organize data.

A color object might house an rgb triple [1 ,0,1]
and a name ‘ magenta’

Visualizing a Point Object

>>> a = 3

>>> b = 4

>>> Q = Point(a,b)

 3 x

 4 y

 Point
Q

 3

 4

a

b

x and y are
attributes

Attributes
are variables
that live
inside objects

Accessing an Attribute

The “Dot Notation” Again

Not a coincidence: modules are objects

Accessing Attributes

>>> Q = Point(3,4)

>>> print Q

(3.000, 4.000)

>>> Q.x = Q.x + 5

>>> print Q

(8.000, 4.000)

Q.x is a variable and can ‘’show up” in all
the usual places, i.e., in an assignment

statement.

4/7/2015

5

Accessing Attributes

>>> Q = Point(3,4)

>>> print Q

(3.000, 4.000)

>>> Q.x = Q.x + 5

>>> print Q

(8.000, 4.000)

Seems that we can print an object!

The “ __str__ “ function

 def __str__(self):
 return '(%6.3f,%6.3f)' %(self.x,self.y)

This function is part of the class definition.

Whenever a statement like

 print P

is encountered, then P is printed according
to format rules.

A Note on Copying an Object

Not Making a Copy of a Point

>>> Q = Point(3,4)

>>> P = Q

 3 x

 4 y

 Point
Q

Not Making a Copy of a Point

>>> Q = Point(3,4)

>>> P = Q

 3 x

 4 y

 Point
Q

P

Making a Copy of a Point

>>> Q = Point(3,4)

>>> P = copy(Q)

 3 x

 4 y

 Point
Q

P

 3 x

 4 y

 Point

4/7/2015

6

The Module copy

from copy import copy

Import this function and use it to make copies
of objects

deepcopy is another useful function from
this module—more later.

Using copy

>>> Q = Point(3,4)

>>> P1 = copy(Q)

>>> P1.x = 5

>>> print Q

(3.000, 4.000)

>>> print P1

(5.000, 4.000)

We are modifying P1, but Q remains the same

Example:
A Function that Returns

a Point Object

Computing a Random Point

def RandomPoint(L,R):

 """ Returns a point that is randomly chosen

 from the square L<=x<=R, L<=y<=R.

 PreC: L and R are floats with L<R

 """

 x = randu(L,R)

 y = randu(L,R)

 P = Point(x,y)

 return P

calling the
constructor

Another Example: Computing
the Midpoint

def MidPoint(P1,P2):

 """ Returns a point that is the midpoint of

 a line segment that connects P1 and P2.

 PreC: P1 and P2 are points.

 """

 xm = (P1.x + P2.x)/2.0

 ym = (P1.y + P2.y)/2.0

 Q = Point(xm,ym)

 return Q

Computing the Midpoint

def MidPoint(P1,P2):

 """ Returns a point that is the midpoint of

 a line segment that connects P1 and P2.

 PreC: P1 and P2 are points.

 """

 xm = (P1.x + P2.x)/2.0

 ym = (P1.y + P2.y)/2.0

 Q = Point(xm,ym)

 return Q

calling the
constructor

referencing
a point’ s
attributes

4/7/2015

7

Distance Between Two Points

def Dist(P1,P2):

 """ Returns a float that is the distance

 from P1 to P2.

 PreC: P1 and P2 are points

 """

 d = sqrt((P1.x-P2.x)**2+(P1.y-P2.y)**2)

 return d

Affirmation of Midpoint

>>> P1 = RandomPoint(-10,10)

>>> P2 = RandomPoint(-10,10)

>>> M = MidPoint(P1,P2)

>>> print Dist(M,P1)

4.29339610681

>>> print Dist(M,P2)

4.29339610681

A List of Objects

We would like to assemble a list whose
elements are not numbers or strings, but
references to objects.

For example, we have a hundred points in
the plane and a length-100 list of points
called ListOfPoints.

Let’s compute the centroid.

A List of Objects

sx = 0

sy = 0

for P in ListOfPoints:

 sx += P.x

 sy += P.y

N = len(ListOfPoints)

TheCentroid = Point(sx/N,sy/N)

A lot of familiar stuff. Running sums. A for-loop.
The len function, Etc

A List of Random Points

def RandomCloud(L,R,n):

 """ Returns a length-n list of points,

 each chosen randomly from the square

 L<=x<=R, L<=y<=R.

 PreC: L and R are floats with L<R,

 n is a positive int.

 """

 A = []

 for k in range(n):

 P = RandomPoint(L,R)

 A.append(P)

 return A

A List of Random Points

def RandomCloud(L,R,n):

 """ Returns a length-n list of points,

 each chosen randomly from the square

 L<=x<=R, L<=y<=R.

 PreC: L and R are floats with L<R,

 n is a positive int.

 """

 A = []

 for k in range(n):

 P = RandomPoint(L,R)

 A.append(P)

 return A

The append
method for
lists works
for lists of
objects

4/7/2015

8

Visualizing a List of Points

>>> P = Point(3,4);Q = Point(1,2);R = Point(9,3)

>>> L = [P,Q,R]

L:

 3 x

 4 y

 Point

 1 x

 2 y

 Point

 9 x

 3 y

 Point

Visualizing a List of Points

>>> P = Point(3,4);Q = Point(1,2);R = Point(9,3)

>>> L = [P,Q,R]

L:

 3 x

 4 y

 Point

 1 x

 2 y

 Point

 9 x

 3 y

 Point

More accurate: A List of references to Point objects

Operations on a List of Points

>>> L[1].x = 100

L:

 3 x

 4 y

 Point

 1 x

 2 y

 Point

 9 x

 3 y

 Point

Before

Operations on a List of Points

>>> L[1].x = 100

L:

 3 x

 4 y

 Point

 100 x

 2 y

 Point

 9 x

 3 y

 Point

After

Operations on a List of Points

>>> L[1] = Point(5,5)

L:

 3 x

 4 y

 Point

 1 x

 2 y

 Point

 9 x

 3 y

 Point

Before

Operations on a List of Points

>>> L[1] = Point(5,5)

L:

 3 x

 4 y

 Point

 5 x

 5 y

 Point

 9 x

 3 y

 Point

After

4/7/2015

9

Printing a List of Points

def printCloud(A):

 """ Prints the points in A

 PreC : A is a list of points.

 """

 for a in A:

 print a

Synonym for the loop:

 for k in range(len(A)):
 print A[k]

An Odometer Function

def odometer(A):

 """ Returns a float that is the

 perimeter of the polygon whose vertices

 are the points in A.

 PreC: A is a list of points.

 """

 d = 0

 n = len(A)

 for k in range(n-1):

 d = d + Dist(A[k],A[k+1])

 d = d + Dist(A[n-1],A[0])

 return d

More on Copying Objects

A subtle issue is involved if you try to copy
objects that have attributes that are
objects themselves.

More on Copying Objects

class MyColor:

 """

 Attributes:

 rgb: length-3 float list

 name: str

 """

 def __init__(self,rgb,name):

 self.rgb = rgb

 self.name = name

To illustrate consider this class

More on Copying Objects

 rgb

 ‘red’ name

 0 0 1
A

>>> A = MyColor([1,0,0],’red’)

More on Copying Objects

 rgb

 ‘red’ name

 0 0 1
A

>>> B = copy(A)

 rgb

 ‘red’ name

B

4/7/2015

10

More on Copying Objects

 rgb

 ‘red’ name

 0 0 1
A

>>> B = copy(A)

 rgb

 ‘red’ name

B

Now let’s
make
A yellow

More on Copying Objects

 rgb

 ‘yellow’ name

 0 1 1
A

>>> A.rgb[1]=1

>>> A.name = ‘yellow’

 rgb

 ‘red’ name

B

Unintended
Effect

B.Rgb refers
to a yellow
triple

More on Copying Objects

 rgb

 ‘red’ name

 0 0 1
A

>>> B = deepcopy(A)

 rgb

 ‘red’ name

 0 0 1
B

deepcopy
copies
everything

Summary: Base Types vs Classes

 Base Types

Built into Python
Instances are values
Instantiate w/ Literals
Immutable

 Classes

Defined in Modules
Instances are objects
Instantiate w/ constructors
Mutable

