4/7/2015

19. Introduction to Classes

Topics:
Class Definitions and Objects
Accessing Attributes
Copying Objects
Functions and classes
Lists of Objects

Motivation

What a Simple Class Definition
Looks Like

class Point:
win

Attributes:
x: float, the x-coordinate of a point
y: float, the y-coordinate of a point

def _ init (self,x,y):

self.x = x
self.y =y

Aclass can be used to " * package” related data

One Reason for classes:
They Elevate the Level Thinking

(64)
>>> P = Point(2,1) ®
>>> Q = Point(6,4)
>>> d = dist(P,Q)
>>> print d Y
5 @)

Here, dist is a function that takes
two Points and computes the distance
between them.

One Reason for classes:
They Elevate the Level Thinking

(64)
>>> P = Point(2,1) ®
>>> Q = Point(6,4)
>>> d = dist(P,Q)
>>> print d Y
s @)

By having a Point class we can think at the
“point level”instead of at the "xy level”

Classes and Types

Recall that a type is a set of valuesand

operations that can be performed on those values.

The four basic "built-in" types:
int, float, str, bool

Classes are a way to define new types

4/7/2015

Examples

By suitably defining a rectangle class, we could
say something like

if Rl.intersect(R2):
print ‘Rectangles Rl and R2 intersect’

Examples

By suitably defining a polynomial class, we
could perform operations like

p=qg+r«r

where gand r are polynomials that are
added together to produce a polynomial p

How to Definea Class

A Point Class

class Point:
Attributes:
x: float, the x-coordinate of a point
y: float, the y-coordinate of a point
def _ init (self,x,y):
self.x = x
self.y =y

A"blue print” for packaging data.
The data will be stored in the attributes.

A Point Class

class Point:
Attributes:
x: float, the x-coordinate of a point
y: float, the y-coordinate of a point
def _ init (self,x,y):
self.x = x
self.y =y

This special function, called a constructor,
does the packaging.

A Point Class

Attributes:
x: float, the x-coordinate of a point
y: float, the y-coordinate of a point
def _ init (self,x,y):
self.x = x
self.y =y

The name of this class is “Point"

The " __init_ " Function

def _ init__ (self,x,y):
""" Creates a Point object

PreC: x and y are floats
self.x
self.y

x
Y

That's a double underscore: __init__

The " __init_" Function

def _ init (self,x,y):
"nt Creates, Point object

PreC: x and|y are floats
self.x
self.y

x
y

“self"is always the firstargument for any

function defined in a class.

The " __init_" Function

def _ init_ (self,x,y):
""" Creates a Point object

PreC: x and y are floats
self.x
self.y

X

e
y L]

The attributes are assigned values.

Call the Constructor
to Createan Ob ject

Calling the Constructor

Point
_—
e X 3

3 y 4

4
>>>a= 3 The constructor's
>>>b = 4 name is the hame
>>> Q = Point (a,b) of the class

Calling the Constructor

Q—> Point
x 3
a 3 Y a4
4
:; ; - 2 Thi§ creates
>>> Q = Point (a,b) aPoint object

4/7/2015

Calling the Constructor

Point
Q — mr
a 3 Yy 4
4
ii; 1a> : i Th: constructor
>>> Q = Point (a,b) :zf::r;snge

Objects: The Folder Metaphor

Manila folders organize data.

Objects organize data.

Apointobject houses float variables xandy,
called the attributes, where (xy)is the point.

Objects: The Folder Metaphor

Visualizinga Point Object

Point
. . Q>
Manila folders organize data. x 3
. . a 3 y 4
Objects organize data.
4
xandy are
atfributes
Acolorobject might house an rgb triple [1,0,1] Attributes
. , are variables
and a name ‘magentd >>>a =3 that live
>>> Db = 4 inside objects
>>> Q = Point (a,b)
Accessing Attributes

Accessingan Attribute

The "Dot Notation” Again

Not a coincidence: modules are objects

>>> Q = Point(3,4)
>>> print Q

(3.000, 4.000)
>>> Q0.x =Q.x + 5
>>> print Q

(8.000, 4.000)

Q.xisa variable and can "show up" inall
the usual places, i.e.,in an assignment
statement.

4/7/2015

Accessing Attributes

>>> Q = Point(3,4)

>>> print Q ——
(3.000, 4.000)

>>> 0.x =Q.x + 5

>>> print Q ——
(8.000, 4.000)

Seems that we can print an object!

The" __str___ " function

def __str__(self):
return '(%6.3f,%6.3f)" %(self.x,self.y)

This function ispart of the class definition.
Whenever a statement like
printP

isencountered, then P is printed according
to format rules.

A Note on Copyingan Ob ject

Not Making a Copy of a Point

Point

oint (3,4)

NA
v
L}
([
10 v

Not Making a Copy of a Point

Point

>>> Q = Point (3,4)
>>>P = Q

Making a Copy of a Point

Point
ﬁ
g b3 3
y 4
Point
p—>
X 3
y 4

>>> Q = Point (3,4)
>>> P = copy(Q)

4/7/2015

The Module copy

from copy import copy

Import this function and use it to make copies
of objects

deepcopy is another useful function from
this module—more later.

Using copy

>>> Q = Point(3,4)
>>> Pl = copy(Q)
>>> Pl.x = 5

>>> print Q

(3.000, 4.000)
>>> print P1

(5.000, 4.000)

We are modifying P1, but Q remains the same

Example:
A Function that Returns
aPoint Object

Computing a Random Point

def RandomPoint(L,R):
""" Returns a point that is randomly chosen
from the square I<=x<=R, L<=y<=R.

PreC: L and R are floats with I<R

nun

x = randu (L,R)
y = randu (L,R)
P = Point (x,y)

return P \

calling the
constructor

Another Example: Computing
the Midpoint

Computing the Midpoint

def MidPoint(P1,P2):
""" Returns a point that is the midpoint of
a line segment that connects Pl and P2.

PreC: Pl and P2 are points.
xm (Pl.x + P2.x)/2.0

ym = (Pl.y + P2.y)/2.0

Q = Point (xm,ym)

return Q

def MidPoint(P1,P2):
""" Returns a point that is the midpoint of
a line segment that connects Pl and P2.

PreC: Pl and P2 are points.

referencing
apoint's
attributes

xm = (Pl.x + P2.x)/2.0
ym = (Pl.y + P2.y)/2.0
Q = Point (xm,ym)

return Q \

calling the
constructor

4/7/2015

Distance Between Two Points

def Dist(P1l,P2):
"n"n Returns a float that is the distance
from P1 to P2.

PreC: Pl and P2 are points
d = sqrt((Pl.x-P2.x)**2+ (Pl.y-P2.y) **2)
return d

Affirmation of Midpoint

>>> Pl = RandomPoint(-10,10)
>>> P2 = RandomPoint(-10,10)
>>> M = MidPoint (P1,P2)

>>> print Dist(M,P1)
4.29339610681

>>> print Dist (M, P2)
4.29339610681

AList of Objects

We would like to assemble a list whose
elements are not numbers or strings, but
references toobjects.

For example, we have a hundred points in
the plane and a length-100 list of points
called ListOfPoints.

Let's compute the centroid.

AList of Objects

sx =0
sy =0
for P in ListOfPoints:

sx += P.x
sy += P.y

N = len(ListOfPoints)
TheCentroid = Point(sx/N, sy/N)

Alot of familiar stuff. Running sums. A for-loop.
The len function, Etc

A List of Random Points

def RandomCloud(L,R,n):
""" Returns a length-n list of points,
each chosen randomly from the square
I<=x<=R, IL<=y<=R.

PreC: L and R are floats with I<R,
n is a positive int.
A=]
for k in range (n):
P = RandomPoint (L,R)
A.append(P)
return A

A List of Random Points

def RandomCloud(L,R,n):

""" Returns a length-n list of points,
each chosen randomly from the square
I<=x<=R, I<=y<=R.

PreC: L and R are floats with I<R,
n is a positive int.

The append

A=] method for

for k in range (n): lists works
P = RandomPoint (L,R) for lists of
A.append (P) objects

return A

4/7/2015

Visualizinga List of Points

Point
x 3 x 1 x 9
y 4 y 2 y 3

>>> P = Point (3,4) ;Q = Point (1,2) ;R = Point(9,3)
>>> L = [P,Q,R]

Visualizinga List of Points

Point Point Point
x 3 x 1 X 9
y 4 y 2 y 3

>>> P = Point (3,4) ;Q = Point (1,2) ;R = Point(9,3)
>>> L = [P,Q,R]

More accurate: A List of references to Point objects

Operationsona List of Points

Point
x 3 X 1 x 9
y 4 y 2 y 3

>>> L[1].x = 100

Before

Operationsona List of Points

Point Point Point
b3 3 x 100 X 9
y 4 y 2 y 3

>>> L[1].x = 100

After

Operationsona List of Points

Point Point Point
x 3 x 1 x 9
y 4 y 2 y 3

>>> L[1] = Point(5,5)

Before

Operationsona List of Points

Point
x 3 x 5 X 9
y 4 y 5 Y 3

>>> L[1] = Point(5,5)

After

Printinga List of Points

def printCloud(a):
""" Prints the points in A

PreC : A is a list of points.

nnw

for a in A:
print a

Synonymfor the loop:

for k in range(len(d)):
print A[k]

An Odometer Function

def odometer (A):
""" Returns a float that is the
perimeter of the polygon whose vertices
are the points in A.

PreC: A is a list of points.
d 0
n len(A)
for k in range (n-1) :

d =d + Dist(A[k],A[k+1])
d = d + Dist(A[n-1] ,A[0])
return d

More on Copying Objects

Asubtle issue is involved if you try to copy
objects that have attributes that are
objects themselves.

More on Copying Ob jects

Toillustrate consider this class

class MyColor:

win

Attributes:
rgb: length-3 float list
name: str

def _ init (self,rgb,name):
self.rgb = rgb
self.name = name

More on Copying Objects

>>> A = MyColor([1,0,0],’red’)

name ‘red’

rgb [1] o] o

A

More on Copying Ob jects

>>> B = copy (3)

name ‘red’

rgb

A—>

name ‘red,
B—>

rgb

4/7/2015

More on Copying Objects

>>> B = copy (A)

Now let’s name ‘red’
make T [3To[0
Avyellow rgb

name ‘red’,

rgb

More

>>> A.rgb[1l]=1
>>> A.name = ‘yellow’

Unintended
Effect

B.Rgb refers
to a yellow
triple

on Copying Objects

name ‘yellow
A—>

rgb n

name ‘red,
B——>
rgb

More on Copying Objects

>>> B = deepcopy (A)

deepcopy name ‘red’
copies A nn
everything rgb

name ‘red’

zgb [1] o]

B—>

Summary: Base Types vs Classes

Base Types

Built into Python
Instancesare values
Instantiate w/ Literals

Immutable

Classes

Definedin Modules
Instancesare objects
Instantiate w/ constructors
Mutable

10

