17. Searching and Sorting

Topics:

Linear Search
Binary Search
Measuring Execution Time
The Divide and Conquer Framework Merge Sort

Search

Examples:

Is this song in that playlist?
Is this number in that phone book?
Is this name in that phone book?
Is this fingerprint in that archive of fingerprints?

Is this photo in that yearbook?

More on Using Phone Books

The Manhatten phone book has 1,000,000+ entries.

How is it possible to locate a name by examining just a tiny, tiny fraction of those entries?

Linear Search

LinSearch: The Spec

```
def LinSearch(x,a):
    """ Returns an int k with the
    property that a[k]==x is True.
    If no such k exists, then
    k==-1.
    PreC: a is a nonempty list of
    ints and x is an int.
    """
```

Linear Search										
0	12		4	5	6	7	8	9	10	11
$a-886$	73 43	35	23	345	42	62	15	25	51	
\bullet										
Walk down the list looking for a match										

Linear Search										
	12	3	4	5	6	7	8	9	10	11
$a-86$	73	35	23	$3{ }^{45}$	42	62	15	25	51	35
\bullet										
Walk down the list looking for a match										

Linear Search										
	01	2	34	5	6	7	8	9	10	11
$a-8$	${ }^{6} 731$	43	35 23	345	5 52	62	15	25	51	
\bullet										
Walk down the list looking for a match										

Linear Search: No Match Case

Linear Search: While Implementation

```
def LinSearchW(x,a):
    k=0
    while k<len(a) and a[k]!=x:
        k+=1
    if k==len(a):
        return -1
    else:
        return k
```


Back to Using Phone Books

The Ithaca phone book has 10,000+ entries.

The Manhatten

phone book has $1,000,000+$ entries. But it does not take $100 \times$ longer to look something up. Why?

Binary Search

Now we assume that the list to be searched is sorted from little to big.
$a=[10,20,40,60,90]$
$a=[$ 'brown','dog','fox', 'lazy', 'quick' ,' the']

Key Idea: Repeated Halving

To Derek Jeter's number...
$\mathrm{B}=$ phone book
while (B is longer than 1 page):

1. $P=$ middle page of B
2. Let Q be the first name on P
3. if 'Jeter" comes before Q :

Rip away the $2^{\text {nd }}$ half of B
else:
Rip away the $1^{\text {st }}$ half of B.
Scan remaining page P line-by-line for 'Jeter'

What Happens to Phone Book Length?

Original: $\quad 3000$ pages
After 1 rip: 1500 pages
After 2 rips: 750 pages
After 3 rips: 375 pages
After 4 rips: 188 pages
After 5 rips: 94 pages
After 12 rips: 1 page

What is $\log _{2}(n)$?

What is $\log _{2}(n) ?$	
n	ceil($\left.\log _{2}(n)\right)$
$-n$	4
10	7
100	10
1000	14
100000	17
1000000	20

Example:

Does this List have an Element With Value Equal to 70?

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 2}$ $\mathbf{1 5}$ $\mathbf{3 3}$ $\mathbf{3 5}$ $\mathbf{4 2}$ $\mathbf{4 5}$ $\mathbf{5 1}$ $\mathbf{6 2}$ $\mathbf{7 3}$ $\mathbf{7 5}$
 $\mathbf{8 6}$ $\mathbf{9 8}$ | | | | | | | | | | | |

Binary Search

The idea of repeatedly halving the size of the "search space" is the main idea behind the method of binary search.

An item in a sorted array of length n can be located with approximately $\log _{2} n$ comparisons.

BinSearch: The Spec

def BinSearch (x, a):

""" Returns an int k with the property that $a[k]==x$ is True. If no such k exists, then $\mathrm{k}==-1$.

PreC: a is a nonempty list of ints that is sorted from smallest to largest. x is an int. """

The Midpoint Computations

L	R	（L＋R）／2
0	11	5
2	6	4
1	100	50

Let＇sLook For x in a											
0	1	2	3	4	5	6	7	8	9	10	11
$a-12$	15	33	35	42	45	51	62	73	75	86	98
\uparrow 介 介											
L ：				a ［Mid］＜$=\mathrm{x}$ ？？？？							
Mid： 5											
$\mathrm{R}: 11 \mathrm{x}: 70$											

Let＇sLook For x in a												
	1	2	3	4	5	6	7	8		9	10	11
	15	33	35	42	45	51	62	7		75	86	
介 介 介												
L				a ［Mid］$<=\mathrm{x}$ ？？？								
Mid： 8												
R：	11		$x: 70$									

Let＇sLook For $x=70$													
0	1	2	3	4	5		6	7		8	9		
a－－12 15 33 35 42 45 51 62 73 75 86 98													
L：	5			a［Mid］＜＝x									
Mid：	6			Revise R and Mid									
R：	8		$\mathbf{x}: 70$										

Let＇sLook For x in a											
0	12	3	4	5	6	7		8	9		11
$a-1$	15 33	35	42	45	51	6	62			86	
		介介 \uparrow									
L：	5	a ［Mid］$<=\mathrm{x}$									
Mid：	6	Yes									
R：	8		x：	70	Throw away the Left half						

Let＇sLook For $x=70$											
$a-1$	12	3	4	5	6	7		8	9	10	11
	15 33		42	45	51	62	2	73	75	86	98
								介			介
L：	5					［M	id	＜	＜\times		
Mid：	8					vis	R	and	d M		
R：	11										

What We Just Did

```
L}=
R= len(a)-1
while R-L > 1:
    # a[L]<=x<=a[R]
    Mid = (L+R)/2
    if x <= a[mid]:
        R = Mid
    else:
        L = Mid
```


A Loop

```
Invariant
R \(=\) Mid
else:
\(\mathrm{L}=\mathrm{Mid}\)
```


What We Just Did

$L=0$
$R=\operatorname{len}(a)-1$
while $\mathrm{R}-\mathrm{L}>1:$ \# $a[L]<=x<=a[R]$
Mid $=(L+R) / 2$
if $x<=a[m i d]:$
$\mathrm{R}=\mathrm{Mid}$
Note that $a[L]=x<=a[R\}$ remains True throughout the loop

What We Just Did

$L=0$
$R=\operatorname{len}(a)-1$
while $R-L>1$:
\# $a[L]<=x<=a[R]$
Mid $=(L+R) / 2$
if $x<=$ a[mid]:
R $=$ Mid
else:
$L=M i d$

What is the situation when the loop terminates?

After the Loop Ends


```
if x==a[L]:
```

 return L
 elif $x==a[L+1]$:
return $L+1$

BinSearch vs LinSearch

n	tBin	tLin	tLinW
1000	0.0007	0.0064	0.0119
10000	0.0009	0.0668	0.1203
100000	0.0011	0.8296	1.2082
1000000	0.0015	17.7388	13.9341

```
tBin = time for BinSearch
tLin = time for LinSearch (for loop version)
tLinW = time for LinSearch (while-loop version)
```

else:
return -1

The timeit Module

This module can be used to time how long it takes to execute a chunk of code.

Typical chunk = some function of interest.
This is called benchmarking.
else:
return -1

Measuring Execution Time

We now have two ways to search a list:

$$
\begin{aligned}
& \operatorname{LinSearch}(x, a) \\
& \operatorname{BinSearch}(x, a)
\end{aligned}
$$

Intuition: BinSearch much faster.

Can we quantify this with a "stop watch"?

Benchmarking

Let's benchmark LinSearch (x, a) and BinSearch (x,a).

Compare how long it takes when len(a) equals $1000,10000,100000$, and 1000000.

Our intuition tells us that as len (a) increases, BinSearch will be dramatically faster.

BinSearch vs LinSearch

n	$\mathrm{tLin} / \mathrm{tBin}$
$--0-1000$	9
10000	74
100000	754
1000000	7095

Reporting ratios is more illuminating since we do not really care about the time units in this informal comparison

Using the timeit Module

We show how this module was use to get the results on the previous slides.

Our LinSearch vs BinSearch example is very typical: is one function faster than another?

The Set-Up and Bench Codes

```
from random import randint as randi
from ShowSearch import BinSearch
n = 10000
s = [randi (0,10*n) for i in range(n)]
s.sort()
x = s[n/2]
k=BinSearch(x,s)
                                    The set-up code is run once.
                                    It is not timed.
    It just sets up the code to be timed.
```


A Benchmarking Framework
 from timeit import *
 $S=\cdots " \cdots$

 Set-up code Yes, these are doc
 """ strings.
$B=\cdots \cdots$
Code to Benchmark
"!"
$\mathrm{p}=10 ; \mathrm{m}=100$
$t=\min (\operatorname{Timer}(B, \operatorname{setup}=S) . \operatorname{repea} t(p, m))$

A Benchmarking Framework

Larger values necessary if the blue code executes very quickly

A Benchmarking Framework

from timeit import *
S = """

Set-up code

" " 1	Timer returns a length-p
$\mathrm{B}=\times \cdots \cdots$	list. Each
Code to Benchmark	element is
" $ו$	time for 1
$\mathrm{p}=10 \% \mathrm{~m}=100$	experiment

This helps control for other stuff that may be running on your computer

A Benchmarking Framework

```
from timeit import *
```

$S=\cdots \cdots "$

Set-up code

This helps control for other stuff that may be running on your computer.

Why Benchmarking is Important

Confirms/refutes what our intuition might say about efficiency.

Makes us sensitive to the various issues that affect efficiency.

Steers us away from simplistic comparisons of different methods that can be used on the same problem.

Motivation

You are asked to sort a list but you have two "helpers": H 1 and H 2 .

Idea:

1. Splitthe list in half and have each helper sort one of the halves.
2. Then merge the two sorted lists into a single larger list.

This idea can be repeated if H 1 has two helpers and H 2 has two helpers.

Subdivide Again

| H | E | M | G | B | K | A | Q |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | H | E | M | G |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Subdivide the Sorting Task

H	E	M	G	B	K	A	P	F	L	P	D	R	C	J

| H | E | M | G | B | K | A | Q |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

And Merge Again

国田

And One Last Time	

And Again

And Again

Done！
目的

Done!

Let's write a function to do this making use of

def Merge (x,y):

""" Returns a float list that is the merge of sorted lists x and y.

PreC: x and y are lists of floats that are sorted from small to big.
"""

Handcoding the $n=16$ case
AO $=$ Merge (a[0], a[1])
A1 $=$ Merge (a[2],a[3])
A2 $=\operatorname{Merge}(a[4], a[5])$
A3 $=$ Merge(a[6],a[7])
A4 $=$ Merge (a[8],a[9])
A5 $=\operatorname{Merge}(a[10], a[11])$
A6 $=$ Merge (a[12],a[13])
A7 $=\operatorname{Merge}(\mathrm{a}[14], \mathrm{a}[15])$

Handcoding the $n=16$ case

$$
\begin{aligned}
& B 0=\operatorname{Merge}(A 0, A 1) \\
& B 1=\operatorname{Merge}(A 2, A 3) \\
& B 2=\operatorname{Merge}(A 4, A 5) \\
& B 3=\operatorname{Merge}(A 6, A 7)
\end{aligned}
$$

8 Merges Producing length-2 lists
\square

田回 M

2 Merges Producing Length-8 Lists
\square

Handcoding the $n=16$ case

C0 $=$ Merge (B0, B1)
$\mathrm{C} 1=\operatorname{Merge}(\mathrm{B} 2, \mathrm{~B} 3)$

For general n, it can be handled using recursion.

1 Merge Producing a Length-16 List

| A | B | E | G | H | K | M | Q |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

