
3/17/2015

1

15. Functions and Lists

Topics:

 Subscripting

 Map

 Searching a list

 Example 1: Clouds of points

 Example 2: Selection Sort

Example 1: Computing the
Diameter of a Cloud of Points

500 Points. Which two are furthest apart
and what is their separation?

Same Problem:
What’s the Biggest Number in

This Table?

Which two cities are furthest apart
and what is their separation?

Example 2: Sorting a List
of Numbers

 50 40 10 80 20 60 x -->

 10 20 40 50 60 80 x -->

Before:

After:

Sorting Algorithms

There are many sorting algorithms:

 Selection Sort

 Insertion Sort

 Bubble Sort

 Merge Sort

 Quick Sort

A great venue for practicing list-based

computing and for studying such things as

efficiency and recursion (which we will do later).

Example 1: Computing the
Diameter of a Cloud of Points

We will develop a module PointCloud

3/17/2015

2

It Will Have Three Functions
MakeCloud(n,sigma)

 This generates two lists x and y that define
the coordinates of the points in the cloud.

Diameter(x,y)

 This will compute the diameter of the cloud
using the (x,y) coordinates of its points.

ShowCloud(x,y)

 This will use simpleGraphicsE to display the
 cloud and highlight the “diameter points”.

The Function MakeCloud

from random import normalvariate as randn

def MakeCloud(n,sigma):

 x=[]

 y=[]

 for k in range(n):

 r = randn(0,sigma)

 x.append(r)

 r = randn(0,sigma)

 y.append(r)

 return (x,y)

New Feature

The normal
distribution

Generating floats from
the Normal Distribution

Generating floats from
the Normal Distribution

If mu and sigma (positive) are floats, then

 x = random.normalvariate(mu,sigma)

assigns to x a “random” float sampled from the
normal distribution with mean mu and standard
deviation sigma

Generating floats from
the Normal Distribution

This is a histogram
of the numbers this
generates:

for k in range(10**6):

 r = randn(0,1)

Mean = 0
Standard deviation = 1

MakeCloud Returns Two Lists

from random import normalvariate as randn

def MakeCloud(n,sigma):

 x=[]

 y=[]

 for k in range(n):

 r = randn(0,sigma)

 x.append(r)

 r = randn(0,sigma)

 y.append(r)

 return (x,y)

New Feature

A function
that returns
more than
one thing.

Note the
parentheses

3/17/2015

3

MakeCloud Returns Two Lists

>>> (x,y) = MakeCloud(3,1)

>>> print x

>>> print y

 [-2.328, -0.044, -0.241]

 [2.737, 2.078, -1.272]

 Note the parentheses

MakeCloud

from random import normalvariate as randn

def MakeCloud(n,sigma):

 x=[]

 y=[]

 for k in range(n):

 r = randn(0,sigma)

 x.append(r)

 r = randn(0,sigma)

 y.append(r)

 return x,y

Old Stuff

x and y start
out as empty
lists.

Repeatedly
generate a
random number
and append to x

Ditto for y

The Diameter Function: What
It Computes

The “diameter
points” and the
distance
between them

Input: lists x and y that define the yellow dots

Diameter: Formal Specs

def Diameter(x,y):

 """ Returns (d,imax,jmax) where d is a

float that is the diameter of a cloud of
points defined by lists x and y. imax and

 jmax are ints that are the indices of the

diameter points.

 The diameter of a cloud of points is the
maximum distance between any two points in
the cloud. The two points for which this

occurs are called diameter points.

 PreC: x and y are lists of floats with the
same length.

Diameter: The Implementation

def Diameter(x,y):

 d = 0

 n = len(x)

 for i in range(n):

 for j in range(n):

 dx = x[i]-x[j]

 dy = y[i]-y[j]

 dij = sqrt(dx**2+dy**2)

 if dij>d:

 d = dij

 imax = i

 jmax = j

 return (d,imax,jmax)

New Feature

Nested Loops

Nested Loops

In this situation we have a loop whose
body contains a loop

for blahblahblah

and contains a loop.

3/17/2015

4

Nested Loops: A Simple Example

for i in range(2):

 for j in range(3):

 print i,j

 print ‘Inner’

print ‘Outer’

Nested Loops: A Simple Example

for i in range(2):

 for j in range(3):

 print i,j

 print ‘Inner’

print ‘Outer’

Execute the loop body with i=0

Nested Loops: A Simple Example

for i in range(2):

 for j in range(3):

 print i,j

 print ‘Inner’

print ‘Outer’

Execute the loop body with i=0

 0 0

 0 1

 0 2

 Inner

Nested Loops: A Simple Example

for i in range(2):

 for j in range(3):

 print i,j

 print ‘Inner’

print ‘Outer’

Execute the loop body with i=1

 0 0

 0 1

 0 2

 Inner

Nested Loops: A Simple Example

for i in range(2):

 for j in range(3):

 print i,j

 print ‘Inner’

print ‘Outer’

Execute the loop body with i=1

 0 0

 0 1

 0 2

 Inner

 1 0

 1 1

 1 2

 Inner

Nested Loops: A Simple Example

for i in range(2):

 for j in range(3):

 print i,j

 print ‘Inner’

print ‘Outer’

Go to the next statement after
the loop body.

 0 0

 0 1

 0 2

 Inner

 1 0

 1 1

 1 2

 Inner

3/17/2015

5

Nested Loops: A Simple Example

for i in range(2):

 for j in range(3):

 print i,j

 print ‘Inner’

print ‘Outer’

Go to the next statement after
the loop body.

 0 0

 0 1

 0 2

 Inner

 1 0

 1 1

 1 2

 Inner

 Outer

Back to Diameter

Aspects of our problem

 - Must check all possible pairs of points.
 - Look at their separation distance
 - What’s the largest among these distances?

When developing nested-loop solutions,
it is essential to apply the methodology of
step-wise refinement, perhaps preceded
by a small example

Suppose There Are 3 points

 From To Dist

(x[0],[y[0]) (x[0],y[0]) 0

(x[0],[y[0]) (x[1],y[1]) 7

(x[0],[y[0]) (x[2],y[2]) 9

(x[1],[y[1]) (x[0],y[0]) 7

(x[1],[y[1]) (x[1],y[1]) 0

(x[1],[y[1]) (x[2],y[2]) 10

(x[2],[y[2]) (x[0],y[0]) 9

(x[2],[y[2]) (x[1],y[1]) 10

(x[2],[y[2]) (x[2],y[2]) 0

Number of possibilities.: 9 = 3x3

Suppose There Are 3 points

 From To Dist

(x[0],[y[0]) (x[0],y[0]) 0

(x[0],[y[0]) (x[1],y[1]) 7

(x[0],[y[0]) (x[2],y[2]) 9

(x[1],[y[1]) (x[0],y[0]) 7

(x[1],[y[1]) (x[1],y[1]) 0

(x[1],[y[1]) (x[2],y[2]) 10

(x[2],[y[2]) (x[0],y[0]) 9

(x[2],[y[2]) (x[1],y[1]) 10

(x[2],[y[2]) (x[2],y[2]) 0

Number of possibilities.: 9 = 3x3

And now, stepwise refinement
in action….

First Solution

d = 0

n = len(x)

for i in range(n):

 # Examine the distance from

 # (x[i],y[i]) to every other point

3/17/2015

6

Second Solution

d = 0

n = len(x)

for i in range(n):

 for j in range(n):

 # Examine the distance from

 # (x[i],y[i]) to (x[j],y[j])

Third Solution

d = 0

n = len(x)

for i in range(n):

 for j in range(n):

 dx = x[i]-x[j]

 dy = y[i]-y[j]

 dij = sqrt(dx**2+dy**2)

 # Compare dij to d revising

 # the latter if necessary

Fourth Solution
d = 0

n = len(x)

for i in range(n):

 for j in range(n):

 dx = x[i]-x[j]

 dy = y[i]-y[j]

 dij = sqrt(dx**2+dy**2)

 if dij>d:

 d = dij

 imax = i

 jmax = j

return (d,imax,jmax)

Fourth Solution
d = 0

n = len(x)

for i in range(n):

 for j in range(n):

 dx = x[i]-x[j]

 dy = y[i]-y[j]

 dij = sqrt(dx**2+dy**2)

 if dij>d:

 d = dij

 imax = i

 jmax = j

return (d,imax,jmax)

We have to
“remember”
where the max
separation
occurs.

Next Up: ShowCloud ShowCloud: Specs

def ShowCloud(x,y):

 """ Displays a point cloud

 defined by x and y and highlights

 the two points that define

 its diameter.

 PreC: x and y are lists of

 floats with the same length.

 """

3/17/2015

7

First: How Big a Window?

xMax = max(map(abs,x))

yMax = max(map(abs,y))

M = max(xMax,yMax)

MakeWindow(1.1*M,bgcolor=BLACK)

New Feature:
 map

Idea: look at the x and y coordinates of
the points and see how big they can be.

Map: Apply a Function to Each
Element in a List

>>> x = [10,-20,-40]

>>> x = map(abs,x)

>>> print x

[10,20,40]

Example. Apply the absolute value function
to every list element

Map: Apply a Function to Each
Element in a List

>>> x = [11.3, 12.4, 15.0]

>>> x = map(math.floor,x)

>>> print x

[11.0,12.0,15.0]

Example. Apply the floor function
to every list element:

Map: Apply a Function to Each
Element in a List

y = []

for k in range(len(x)):

 y.append(math.sqrt(x([k]))

This:

y = map(math.sqrt,x)

Is equivalent to this:

 Assuming that x is an initialized list of nonnegative numbers

Map: Formal Syntax

map(,)

The name of a function that
returns a value. Every element in
the list must satisfy its precondition.

The name of a list.

Now, Back to ShowCloud

3/17/2015

8

First: How Big a Window?

xMax = max(map(abs,x))

yMax = max(map(abs,y))

M = max(xMax,yMax)

MakeWindow(1.1*M,bgcolor=BLACK)

x = [-19,12,-4]

max(map(abs,x))

>>> 19

Next, Use DrawDisk For
Each Point

r = M/50;

(d,i,j) = Diameter(x,y)

for k in range(len(x)):

 if k==i or k==j:

 DrawDisk(x[k],y[k],2*r,color=CYAN)

 DrawDisk(x[k],y[k],r,color=YELLOW)

i and j are the indices of the diameter points.

Before they are displayed, we paint a larger
cyan dot.

Now, on to another example that
highlights functions + lists

Example 2: Sorting a List
of Numbers

 50 40 10 80 20 60 x -->

 10 20 40 50 60 80 x -->

Before:

After:

We Will Implement the
Method of Selection Sort

 50 40 10 80 20 60 x -->

At the Start:

High-Level:

 for k in range(len(x)-1)
 Swap x[k] with the smallest

 value in x[k:]

Selection Sort: How It Works

 50 40 10 80 20 60 x -->

Before:

Swap x[0] with the smallest value in x[0:]

3/17/2015

9

Selection Sort: How It Works

 50 40 10 80 20 60 x -->

Before:

Swap x[0] with the smallest value in x[0:]

 10 40 50 80 20 60 x -->

After:

Selection Sort: How It Works

 10 40 50 80 20 60 x -->

Before:

Swap x[1] with the smallest value in x[1:]

Selection Sort: How It Works

 10 40 50 80 20 60 x -->

Before:

Swap x[1] with the smallest value in x[1:]

 10 20 50 80 40 60 x -->

After:

Selection Sort: How It Works

Before:

Swap x[2] with the smallest value in x[2:]

 10 20 50 80 40 60 x -->

Selection Sort: How It Works

Before:

Swap x[2] with the smallest value in x[2:]

 10 20 40 80 50 60 x -->

After:

 10 20 50 80 40 60 x -->

Selection Sort: How It Works

Before:

Swap x[3] with the smallest value in x[3:]

 10 20 40 80 50 60 x -->

3/17/2015

10

Selection Sort: How It Works

Before:

Swap x[3] with the smallest value in x[3:]

 10 20 40 50 80 60 x -->

After:

 10 20 40 80 50 60 x -->

Selection Sort: How It Works

Before:

Swap x[4] with the smallest value in x[4:]

 10 20 40 50 80 60 x -->

Selection Sort: How It Works

Before:

Swap x[4] with the smallest value in x[4:]

 10 20 40 50 60 80 x -->

After:

 10 20 40 50 80 60 x -->

Selection Sort: Recap

 50 40 10 80 20 60

 10 40 50 80 20 60

 10 20 50 80 40 60

 10 20 40 80 50 60

 10 20 40 50 80 60

 10 20 40 50 60 80

 10 20 40 50 60 80

The Essential Helper Function:
Select(x,i)

def Select(x,i):

 """ Swaps the smallest value in

 x[i:] with x[i]

 PreC: x is a list of integers and

 i is an in that satisfies

 0<=i<len(x)"""

 Does not return anything and it has a list argument

How Does it Work?

The calling program has a list. E.g.,

 0 ---> 50

 1 ---> 40

 2 ---> 10

 3 ---> 80

 4 ---> 20

 5 ---> 60

 a -->

3/17/2015

11

How Does it Work?

The calling program executes Select(a,0)
and control passes to Select

 0 ---> 50

 1 ---> 40

 2 ---> 10

 3 ---> 80

 4 ---> 20

 5 ---> 60

 a -->

How Does Select Work?

- Nothing new about the assignment of 0 to i.
- But there is no assignment of the list a to x.
- Instead x now refers to the same list as a.

 0 ---> 50

 1 ---> 40

 2 ---> 10

 3 ---> 80

 4 ---> 20

 5 ---> 60

 a -->

x --------------------->

i ---> 0

How Does Select Work?

If inside Select we have
 t = x[0]; x[0] = x[2]; x[2] = t
it is as if we said
 t = a[0]; a[0] = a[2]; a[2] = t

 0 ---> 50

 1 ---> 40

 2 ---> 10

 3 ---> 80

 4 ---> 20

 5 ---> 60

 a -->

x --------------------->

i ---> 0

How Does Select Work?

It changes the list a in the calling program.
We say x and a are aliased. They refer
to the same list

 0 ---> 10

 1 ---> 40

 2 ---> 50

 3 ---> 80

 4 ---> 20

 5 ---> 60

 a -->

x --------------------->

i ---> 0

Let’s Assume This Is
Implemented

def Select(x,i):

 """ Swaps the smallest value in

 x[i:] with x[i]

 PreC: x is a list of integers and

 i is an in that satisfies

 0<=i<len(x)"""

 50 40 10 80 20 60

 10 40 50 80 20 60

 10 20 50 80 40 60

 10 20 40 80 50 60

 10 20 40 50 80 60

 10 20 40 50 60 80

 10 20 40 50 60 80

The list a looks like this After this:

Initialization

Select(a,0)

Select(a,4)

Select(a,5)

Select(a,3)

Select(a,1)

Select(a,2)

3/17/2015

12

def SelectionSort(a):

 n = len(a)

 for k in range(n):

 Select(a,k)

In General We Have This

