
3/12/2015

1

13. Lists of Numbers

Topics:
 Lists of numbers
 Lists and Strings
 List Methods
 Setting up Lists
 Functions that return a li st

We Have Seen Them Before

MyColor = [.3,.4,.5]

DrawDisk(1,2,color=MyColor)

Recall that the rgb encoding of a color
involves a triplet of numbers:

It is a way of assembling a collection of numbers.

A List has a Length

The following would assign the value of 5
to the variable n:

x = [3.0, 5.0, -1.0, 0.0, 3.14]

n = len(x)

The Entries in a List Can
Be Accessed Using Subscripts

The following would assign the value of -1.0
to the variable a:

x = [3.0, 5.0, -1.0, 0.0, 3.14]

a = x[2]

A List Can Be Sliced

This: x = [10,40,50,30,20]

y = x[1:3]

z = x[:3]

w = x[3:]

Is same as: x = [10,40,50,30,20]

y = [40,50]

z = [10,40,50]

w = [30,20]

Lists Seem to Be Like Strings

‘x’ ‘1’ ‘?’ ‘L’ ‘C’ ‘a’ s:

 3 2 7 5 4 0 x:

A string is a sequence of characters.

A list of numbers is a sequence of numbers.

3/12/2015

2

Lists in Python

A = [1.0,True,’abc’,4.6]

Right now we are dealing with lists of numbers.

But in general, the elements in a li st can have
arbitrary type:

The operations on lists that we are about to describe will be illustrated using lists
of numbers. But they can be applied to any kind of list.

Visualizing Lists

 0 ---> 3

 1 ---> 5

 2 ---> 1

 3 ---> 7

x ---->

 3 1 7 5 x:

 0 1 2 3

Informal:

Formal:

A state diagram that shows
the “map” from indices to
elements.

Lists Vs Strings

There are some simi larities.

But there also a huge difference:

 1. Strings are immutable. They cannot be changed.

 2. Lists are mutable. They can be change.

Strings are Immutable

Before

s[2]= ‘x’

After

‘a’ ‘c’ ‘d’ ‘b’ s:

 0 1 2 3

You cannot change the value of a string

TypeError: 'str' object does

not support item assignment

Lists ARE Mutable

Before

x[2] = 100

After

You can change the values in a list

 3 1 7 5 x:

 0 1 2 3

 3 100 7 5 x:

 0 1 2 3

Lists ARE Mutable

Before

x[1:3] = [100,200]

After

You can change the values in a list

 3 1 7 5 x:

 0 1 2 3

 3 200 7 100 x:

 0 1 2 3

3/12/2015

3

List Methods

When these methods are applied to a list, they

affect the list.

 append

 extend

 insert

 sort

They do not return anything. Actually, they return
None which is Python’s way of saying they do not
return anything.

List Methods: append

Before

x.append(100)

After 3 1 7 5 x:

 0 1 2 3 4

100

When you want to add an element on the end of a given list.

 3 1 7 5 x:

 0 1 2 3

List Methods: extend

Before

t = [100,200]

x.extend(t)

After 3 1 7 5 x:

 0 1 2 3 4 5

100

 3 1 7 5 x:

 0 1 2 3

200

When you want to add one list onto the end of another list.

List Methods: insert

Before

i = 2

a = 100

x.insert(i,a)

After 3 100 1 5 x:

 0 1 2 3 4

 7

 3 1 7 5 x:

 0 1 2 3

When you want to insert an element into the list. Values in x[i:] get “bumped” to

the right and the value a becomes the new value of x[i].

List Methods: sort

Before

x.sort()

After 1 5 3 x:

 0 1 2 3

 7

 3 1 7 5 x:

 0 1 2 3

When you want to sort the elements in a list from little to big.

List Methods: sort

Before

x.sort(reverse=True)

After 7 3 5 x:

 0 1 2 3

 1

 3 1 7 5 x:

 0 1 2 3

When you want to sort the elements in a list from big to little.

3/12/2015

4

Back to the “Void Business”

These methods do not return anything:

 append extend insert sort

So watch its

>>> x = [10,20,30]

>>> y = x.append(40)

>>> print x

[10, 20, 30, 40]

>>> print y

None

x.append(40) does
something to x.

In particular, it appends
an element to x

It returns None and that is
assigned to y.

List Methods: pop

When this method is applied to a list,

it affects the list but also returns something:

 pop

List Methods: pop

Before

i = 2

m = x.pop(i)

After 3 5 x:

 0 1 2

 7

 3 1 7 5 x:

 0 1 2 3

When you want to remove the ith element and assign it to a variable.

 1 m:

List Methods: count

When this method is applied to a list,

it returns something:

 count

List Methods: count

Before

m = x.count(7)

After 3 1 7 x:

 0 1 2 3

 7

 3 1 7 7 x:

 0 1 2 3

When you want to sort the elements in a list from big to little.

m: 2

Built-In Functions that Can
be Applied to Lists

len returns the length of a li st

sum returns the sum of the elements in
 a li st provided all the elements are
 numerical.

3/12/2015

5

len and count

Before

m = len(x)

s = sum(x)

After 3 1 7 x:

 0 1 2 3

 5

 3 1 5 7 x:

 0 1 2 3

m: 4

s: 16

Setting Up Little Lists

The examples so far have all been small.

When that is the case, the “square bracket”
notation is just fine for setting up a li st

x = [10,40,50,30,20]

Don’t Forget the Commas!

Working with Big Lists

Setting up a big li st wi ll require a loop.

Looking for things in a big li st wi ll require
a loop.

Let’s look at some examples.

A Big List of Random Numbers

Roll a dice one million times. Record the outcomes in a list.

from random import randint as randi

x = []

N = 1000000

for k in range(N):

 r = randi(1,6)

 x.append(r)

The idea here is to keep appending values to x, which
starts out as the empty list.

This Does Not Work

from random import randint as randi

x = []

N = 1000000

for k in range(N):

 r = randi(1,6)

 x[k]=r

x[k] = r

IndexError: list assignment index out of range

A List of Square Roots

x = []

N = 1000000

for k in range(N):

 s = math.sqrt(k)

 x.append(s)

3/12/2015

6

A Random Walk

from random import randint as randi

x = [0]

k = 0

x[k] is robot’s location after k hops

while abs(x[k])<=10:

 # Flip a coin and hop right or left

 r = randi(1,2)

 if r==1:

 new_x = x[k]+1

 else:

 new_x = x[k]-1

 k = k+1

 x.append(new_x)

A Random Walk

from random import randint as randi

x = [0]

k = 0

x[k] is robot’s location after k hops

while abs(x[k])<=10:

 # Flip a coin and hop right or left

 r = randi(1,2)

 if r==1:

 new_x = x[k]+1

 else:

 new_x = x[k]-1

 k = k+1

 x.append(new_x)

Be Careful About Types

This is OK and synonymous with x = [0,10]:

 x = [0]
 x.append(10)

This is not OK:

 x = 0
 x.append(10)

AttributeError: 'int' object has

 no attribute 'append'

Be Careful About Types

>>> x = 0

>>> type(x)

<type 'int'>

>>> x = [0]

>>> type(x)

<type 'list'>

Functions and Lists

Let’s start with a function that returns a li st.

In particular, a function that returns a
li st of random integers from a given
i nterval.

Then we wi ll use that function to estimate
various probabi li ties when a pair of dice are
rolled.

A List of Random Integers

from random import randint as randi

def randiList(L,R,n):

 “““ Returns a length-n list of

 random integers from interval [L,R]

 PreC: L,R,n ints with L<=R and n>=1

 ”””

 x = []

 for k in range(n):

 r = randi(L,R)

 x.append(r)

 return x

3/12/2015

7

Outcomes from Two Dice Rolls

Roll a pair of dice N times

Store the outcomes of each dice roll
in a pair of length-N lists.

Then using those two lists, create a third
list that is the sum of the outcomes
in another list.

Outcomes from Two Dice Rolls

Example:

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

 5 9 6 4 D:

 0 1 2 3

How to Do It

N = 1000000

D1 = randiList(1,6,N)

D2 = randiList(1,6,N)

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 0

 4

At the start of the loop D: []

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 0

 4

TwoThrows = D1[0]+D2[0] D: []

TwoThrows --> 5

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 0

 4

D.append(5)

TwoThrows --> 5

 5 D:

3/12/2015

8

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 1

 4

TwoThrows= D1[1]+D2[1]

TwoThrows --> 4

 5 D:

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 1

 4

D.append(4)

TwoThrows --> 4

 5 D:

 4

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 2

 4

TwoThrows= D1[2]+D2[2]

TwoThrows --> 9

 5 D:

 4

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 2

 4

D.append(9)

TwoThrows --> 9

 5 D:

 4 9

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 3

 4

TwoThrows = D1[3]+D2[3]

TwoThrows --> 9

 5 D:

 4 9

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 3

 4

TwoThrows = D1[3]+D2[3]

TwoThrows --> 6

 5 D:

 4 9

3/12/2015

9

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 3

 4

D.append(6)

TwoThrows --> 6

 5 D:

 4 9 6

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

N -->

k --> 4

 4

All Done!

TwoThrows --> 6

 5 D:

 4 9 6

Now Let’s Record all the 2-
Throw Outcomes

count = [0,0,0,0,0,0,0,0,0,0,0,0,0]

for k in range(N):

 i = D[k]

 count[i] = count[i]+1

 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12

count:

count[2] keeps track of the number of 2’s thrown
count[10] keeps track of the numberof 10’s thrown

Now Let’s Record all the 2-
Throw Outcomes

count = [0,0,0,0,0,0,0,0,0,0,0,0,0]

for k in range(N):

 i = D[k]

 count[i] = count[i]+1

The variable i i s assigned the outcome
of the k-th 2-die roll.

Now Let’s Count 2-Throw
Outcomes

count = [0,0,0,0,0,0,0,0,0,0,0,0,0]

for k in range(N):

 i = D[k]

 count[i] = count[i]+1

Suppose:

i --> 7

 0 0 3 1 5 8 7 2 1 6 9 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12

count:

Now Let’s Count 2-Throw
Outcomes

count = [0,0,0,0,0,0,0,0,0,0,0,0,0]

for k in range(N):

 i = D[k]

 count[i] = count[i]+1

Suppose i --> 7

then the assignment count[i] = count[i]+1

effectively says count[7] = count[7]+1

3/12/2015

10

Now Let’s Count 2-Throw
Outcomes

count = [0,0,0,0,0,0,0,0,0,0,0,0,0]

for k in range(N):

 i = D[k]

 count[i] = count[i]+1

Before:

i --> 7

 0 0 3 1 5 8 7 2 1 6 9 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12

count:

 0 0 3 1 5 8 7 3 1 6 9 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12

count:

After:

Now Let’s Count 2-Throw
Outcomes

count = [0,0,0,0,0,0,0,0,0,0,0,0,0]

for k in range(N):

 i = D[k]

 count[i] = count[i]+1

Sample Results, N = 10000

 k count[k]

 2 293

 3 629

 4 820

 5 1100

 6 1399

 7 1650

 8 1321

 9 1149

 10 820

 11 527

 12 292

for k in range(2,13):

 print k,count[k]

