
12. Odds and Ends

Topics:

 floor, ceil, round, int

 a fact about string slicing

 more on in

 other ways of terminating a loop

 type

 try-except

 assert

floor, ceil, round, int

math.floor, math.ceil,

round, int

Let’s look at what these functions do and
the type of the value that they return.

math.floor, math.ceil,

round, int

 x math.floor(x) math.ceil(x) round(x) int(x)

 2.9 2.0 3.0 3.0 2

 2.2 2.0 3.0 2.0 2

 2 2.0 2.0 2.0 2

 2.5 2.0 3.0 3.0 2

-3.9 -4.0 -3.0 -4.0 -3

-3.2 -4.0 -3.0 -3.0 -3

math.floor, math.ceil,

round, int

These functions all return values of type float:

 math.floor(x) largest integer <= x
 math.ceil(x) smallest integer >= x
 round(x) nearest integer to x

This function returns a value of type int:

 int(x) round towards 0

String Slicing

When String Slicing Goes
“Beyond the End”

First, requesting a character from a
position that doesn’t exist results in an
error:

s = 'abcdef'

t = s[10]

IndexError: string index out of range

When String Slicing Goes
“Beyond the End”

On the other hand, requesting a slice

that goes beyond the end of the “source

string” is OK:

 0 1 2 3 4 5 6 7 8 9

s = 'abcdef'

t = s[4:10]

print t

 ‘ef’

More on in

A Handy Boolean Device

If s1 and s2 are strings, then

 s1 in s2

is a boolean-valued expression.

True if there is an instance of s1 in s2.

False if there is NOT an instance of s1 in s2.

in versus find

These are equivalent:

 x = s1 in s2

 x = s2.find(s1)>=0

Type Checking With
isinstance

How isinstance Works

It is a boolean-valued function with two arguments.

isinstance(x,int)

 True if variable x houses an int value
 Otherwise, False
isinstance(x,float)

 True if variable x houses a float value
 Otherwise, False
isinstance(x,str)

 True if variable x houses a string value
 Otherwise, False

Using isinstance

def sqrt(x):

 if isinstance(x,str):

 print ‘x must be type int or float’

 return

 L = x

 while abs(L – x/L) >=10**-12:

 L = (L + x/L)/2

 return L

Guard against the user passing a string to sqrt:

Loop-Body Returns

Loop-Body Returns

Another way to terminate a loop.

Uses the fact that in a function, control
is passed back to the calling program
as soon as a return statement is encountered.

A Problem

Write a function

 MyFind(char,s)

that returns True if character char is in
string s and returns False otherwise.

.

Typical While-Loop Solution

When the loop ends, if k==len(s) is True,
 then we never found an instance of char.

def MyFind(char,s):

 k = 0

 while k<len(s) and char!=s[k]:

 k = k+1

 if k==len(s):

 return False

 else:

 return True

While-Loop Solution
with a Loop-Body Return

def MyFind(char,s):

 k = 0

 while k<len(s):

 if s[k]==char

 return True

 k = k+1

 return False

The function “jumps out of the loop” and returns True should
 it encounter an instance of char. If the loop runs to completion,
that means there is no instance of char.

For Loop Solution with a
Loop Body return

def MyFind(char,s):

 for k in range(len(s)):

 if s[k]==char:

 return True

 return False

The function “jumps out of the loop” and returns True should
 it encounter an instance of char. If the loop runs to completion,
that means there is no instance of char.

Another For Loop Solution with a
Loop Body return

def MyFind(char,s):

 for c in s:

 if c==char:

 return True

 return False

The function “jumps out of the loop” and returns True should
 it encounter an instance of char. If the loop runs to completion,
that means there is no instance of char.

break

break

Another way to terminate a loop

But it must be used with care for style reasons.

How break Works

As soon as a break statement is executed
inside a loop body, the loop ends and the
next statement after the body is executed.

Example

Compute the smallest N so that N!>10

fact = 1

for N in range(1,10000):

 fact = fact*N

 if fact>10:

 print N

 break

print fact

Loop range
big enough
to ensure
we will get
a large
enough
factorial

 Recall that 5! = 1 x 2 x 3 x 4 x5

Example

Print the smallest N so that N!>10

fact = 1

for N in range(1,10000):

 fact = fact*N

 if fact>10:

 print N

 break

print fact

Bad Style! Have to guess a suitable for-loop range.

While Loop Solution

Compute the smallest N so that N!>10

fact = 1

N = 1

fact = N!

while fact <=10:

 N = N+1

 fact = fact*N

print fact

A Good Example of break Usage

Consider the following problem.

A user enters an integer N from the keyboard

and Python is to display the value of N!

Recall: 5! = 1x2x3x4x5 = 120

Use math.factorial(N)

A Good Example of break Usage

Possible issue.

When we use math.factorial(N), the value
of N must be nonnegative.

What if the user inputs -5?

Would like to say, “try again”

A Good Example of break Usage

while True:

 N = raw_input(‘Enter pos int: ’)

 N = int(N)

 if N>=0

 break

 else:

 print ‘N must be nonnegative’

print math.factorial(N)

 Keep iterating until a nonnegative int is obtained

Another Issue

If the user doesn’t enter a string of
digits then the int statement will crash
the program:

 N = raw_input(‘Enter pos int: ’)
 N = int(N)

This brings up the challenge of “exceptions” and
“exception handling.”

A ValueError Exception

>>> int('12F')

ValueError: invalid literal for int()

 with base 10: '12F'

Exception a.k.a. run time error

Challenge

Is there a way we can keep soliciting

keyboard input until the user enters a

string of numbers?

Don’t want the program to terminate because

of a ValueError.

The Try-except
Construction

A graceful way to handle exceptions

Example Showing Try-Except
from math import factorial

while True:

 n = raw_input('Enter an integer: ')

 try:

 n = int(n)

 break

 except ValueError:

 print 'Invalid input. Try again.'

m = factorial(n)

print m

How It Works
from math import factorial

while True:

 n = raw_input('Enter an integer: ')

 try:

 n = int(n)

 break

 except ValueError:

 print 'Invalid input. Try again.'

print factorial(n

If int(n) in the green block triggers a ValueError
 exception, then control passes to the cyan block.
A message is printed and the loop continues

How It Works
from math import factorial

while True:

 n = raw_input('Enter an integer: ')

 try:

 n = int(n)

 break

 except ValueError:

 print 'Invalid input. Try again.'

print factorial(n)

If int(n) does not trigger a ValueError exception,
then the break is executed and the loop is over
and control passes to the print factorial(n) line

Note on Exceptions

The try-except block in the previous example was
“looking for” ValueError exceptions

t = int(‘12F’)

ValueError: invalid literal for int() with

 base 10: '123F‘

Python has a collection of exceptions and they
all have names.

Examples of Exceptions

t = s[10]

IndexError: string index out of range

import simpleGraphics

ImportError: No module named simpleGraphics

x = y+1

NameError: name 'y' is not defined

 s = s1/s2

TypeError: unsupported operand type(s) for /:

'str' and 'str'

Try-Except Construction
try:

except :

 Code that may generate

 a particular exception

 Code to execute if

 the particular

 exception is found

Name of Exception

Assertions

A graceful way to check that your
program is doing what it should be doing

Assert

A handy debugging tool .

Used to check that things are “ok” at
a particular point during execution.

Typical:

 1. At the start of a function body, are
 the preconditions satisfied?
 2. At the end of the function body, is
 the value returned the right type?

Assertions: How They Work

assert B,S

If boolean expression B is not true,
then string S is printed and an exception
is generated.

Checking Precondition

def sqrt(x):

 assert x>0, ‘must have x>0’

 L=float(x);

 W=1.0

 while abs(L-W)/L > 10**-12:

 L = (L+W)/2

 W = x/L

 return L

