11. More on While and BooleanValued Functions

Topics:
Reasoning about While Loops
Designing Boolean-Valued Functions

Four Examples

1. Random Walk
2. Fibonacci numbers and the Golden Ratio
3. A Spiral Problem
4. Detecting streaks in a coin toss sequence

Random Walk

Random Walk

Tiles 1×1
Middle tile has center $(0,0)$
Robot starts at center tile
Hops according to coin flip
Heads: Hop left
Tails: Hop right
Simulation over when robot hops off runway

Random Walk

from random import randint as randi $\mathbf{x}=0$
while abs (x)<=5:

$$
\begin{aligned}
& r=\text { randi }(1,2) \\
& \text { if } r==1: \\
& x=x+1
\end{aligned}
$$

else:

$$
x=x-1
$$

Random Walk

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=\operatorname{randi}(1,2)$
if $r=1$:
$\mathrm{x}=\mathrm{x}+1$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1:$
$\mathrm{x}=\mathrm{x}+1$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
($\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
$\mathrm{x}=\mathrm{x}+1$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs (x) <=5:
$r=r a n d i(1,2)$
if $r=1:$
$x=x+1$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=\operatorname{randi}(1,2)$
if $r=1$:
$\mathrm{x}=\mathrm{x}+1$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
$\mathrm{x}=\mathrm{x}+1$
else:
$x=x-1$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
$\mathrm{x}=\mathrm{x}+1$
else:
$x=x-1$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=\operatorname{randi}(1,2)$
if $r=1$:
$\mathrm{x}=\mathrm{x}+1$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
($\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
$\mathrm{x}=\mathrm{x}+1$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs (x) <=5:
$r=r a n d i(1,2)$
if $r=1:$
$x=x+1$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$ while abs (x) <=5:
$r=\operatorname{randi}(1,2)$
if $r=1:$
$x=x+1$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
$\mathrm{x}=\mathrm{x}+1$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$ while abs (x) <=5:
$r=\operatorname{randi}(1,2)$
if $r=1:$
$x=x+1$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=\operatorname{randi}(1,2)$
if $r=1$:
$\mathrm{x}=\mathrm{x}+1$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs(x)<=5:
$r=r a n d i(1,2)$
if $r=1$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Random Walk

$\mathbf{x}=0$
while abs (x) <=5:
$r=\operatorname{randi}(1,2)$
if $r=1:$
$x=x+1$
else:

$$
x=x-1
$$

2. Fibonacci Numbers and the Golden Ratio

Fibonacci Numbers and the Golden Ratio

Here are the first 12 Fibonacci Numbers
$0,1,1,2,3,5,8,13,21,34,55,89,144$
The Fibonacci ratios $1 / 1,2 / 1,3 / 2,5 / 3,8 / 5$ get closer and closer to the "golden ratio"

$$
\text { phi }=(1+\operatorname{sqrt}(5)) / 2
$$

Fibonacci Ratios 2/1, 3/2,5/3, 8/5

Generating Fibonacci Numbers

Here are the first 12 Fibonacci Numbers
$0,1,1,2,3,5,8,13,21,34,55,89,144$

Starting here, each one is the sum of its two predecessors

Generating Fibonacci Numbers

$0,1,1,2,3,5,8,13,21,34,55,89,144$

$$
\begin{array}{ll|l|}
\mathbf{k} & --> & 0 \\
\mathbf{x} & --> & 0 \\
\mathrm{y} & --> & 1 \\
z & --> & \\
\hline
\end{array}
$$

Generating Fibonacci Numbers

$0,1,1,2,3,5,8,13,21,34,55,89,144$

$$
\begin{array}{ll|l|}
\mathbf{k} & --> & 0 \\
\mathbf{x} & --> & 1 \\
y & --> & 1 \\
z & --> & 1 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \mathbf{x}=0 \\
& \mathrm{y}=1 \\
& \text { for } k \text { in range(10): } \\
& z=x+y \\
& x=y \\
& y=z
\end{aligned}
$$

Generating Fibonacci Numbers

$0,1,1,2,3,5,8,13,21,34,55,89,144$

$$
\begin{array}{ll|l|}
\mathbf{k} & --> & 1 \\
\mathbf{x} & --> & 1 \\
y & --> & 1 \\
z & --> & 1 \\
\hline
\end{array}
$$

Generating Fibonacci Numbers

$0,1,1,2,3,5,8,13,21,34,55,89,144$

$$
\begin{array}{ll|l|}
\mathbf{k} & --> & 1 \\
\mathbf{x} & --> & 1 \\
y & --> & 2 \\
z & --> & 2 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& x=0 \\
& y=1 \\
& \text { for } k \text { in range (10): } \\
& \quad z=x+y \\
& x=y \\
& y=z
\end{aligned}
$$

Generating Fibonacci Numbers

$0,1,1,2,3,5,8,13,21,34,55,89,144$

$$
\begin{array}{ll|l|}
\mathbf{k} & --> & 2 \\
x & --> & 1 \\
y & --> & 2 \\
z & --> & 2 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& x=0 \\
& y=1 \\
& \text { for in range }(10): \\
& \begin{array}{l}
z=x+y \\
x=y \\
y=z
\end{array}
\end{aligned}
$$

Generating Fibonacci Numbers

$0,1,1,2,3,5,8,13,21,34,55,89,144$

\[

\]

$$
\begin{aligned}
& x=0 \\
& y=1 \\
& \text { for } k \text { in range (10): } \\
& \quad z=x+y \\
& x=y \\
& y=z
\end{aligned}
$$

Generating Fibonacci Numbers

$0,1,1,2,3,5,8,13,21,34,55,89,144$

\[

\]

Generating Fibonacci Numbers

$0,1,1,2,3,5,8,13,21,34,55,89,144$

$$
\begin{array}{ll|l|}
\mathbf{k} & --> & 3 \\
\mathbf{x} & --> & 3 \\
y & --> & 5 \\
z & --> & 5 \\
\hline
\end{array}
$$

Generating Fibonacci Numbers

$$
\begin{aligned}
& x=0 \\
& \text { print } x \\
& y=1 \\
& \text { print } y \\
& \text { for } k \text { in range }(6): \\
& \quad z=x+y \\
& x=y \\
& y=z \\
& \text { print } z
\end{aligned}
$$

Generating Fibonacci Numbers

$$
\begin{aligned}
& x=0 \\
& \text { print } x \\
& y=1 \\
& \text { print } y \\
& \text { for } k \text { in range (6): } \\
& \quad z=x+y \\
& \quad x=y \\
& \quad y=z \\
& \quad \text { print } z
\end{aligned}
$$

$\mathrm{x}=0$
print x
$y=1$
print y
$\mathrm{k}=0$
while $\mathbf{k}<6$:
$z=x+y$
$\mathrm{x}=\mathrm{y}$
$y=z$
print z
$\mathbf{k}=\mathbf{k}+1$

Print First Fibonacci Number >= 1000000

$$
\begin{aligned}
& x=0 \\
& y=1 \\
& z=x+y \\
& \text { while } y<1000000: \\
& \quad x=y \\
& \quad y=z \\
& \quad z=x+y
\end{aligned}
$$

print y

Print First Fibonacci Number >= 1000000

past $=0$
current = 1
next $=$ past + current while current < 1000000:
past $=$ current
current = next
next $=$ past + current print current

1346269

Print First Fibonacci Number $>=1000000$

$$
\begin{aligned}
& \text { past }=0 \\
& \text { current }=1 \\
& \text { next }=\text { past }+ \text { current } \\
& \text { while current }<1000000: \\
& \text { past }=\text { current } \\
& \text { current }=\text { next } \\
& \text { next }=\text { past }+ \text { current } \\
& \text { print current }
\end{aligned}
$$

Print Largest Fibonacci Number < 1000000

past $=0$
current = 1
next $=$ past + current while next <= 1000000:
past = current
current = next
next $=$ past + current
print current

Print Largest Fibonacci Number < 1000000

past $=0$
current = 1
next $=$ past + current while next < 1000000:
past = current
current = next
next $=$ past + current
print current

Reasoning. When the while loop terminates, it will be the first time that next $>=1000000$ is true. Current has to be < 1000000. And it is the largest fib with this property

Fibonacci Ratios

past $=0$
current = 1
next $=$ past + current while next <= 1000000:
past = current
current = next
next $=$ past + current
print next/current

Heading towards the
Golden ratio $=(1+\operatorname{sqrt}(5)) / 2$
1.000000000000
2.000000000000
1.500000000000

1. 666666666667
2. 600000000000
3. 625000000000
4. 615384615385
5. 619047619048
6. 617647058824
7. 618181818182
8. 617977528090
9. 618055555556
10. 618025751073
11. 618037135279
12. 618032786885

Fibonacci Ratios

past $=0$
current = 1
next $=$ past + current
$\mathrm{k}=1$
phi = (1+math.sqrt(5))/2
while abs(next/current - phi) > 10**-9
past = current
current = next
next $=$ past + current
$\mathrm{k}=\mathrm{k}+1$
print k, next/current

Most Pleasing Rectangle

1
$(1+$ sqrt(5))/2
3. A Spiral Problem

A Spiral Problem

Recall:

DrawSpiral (N,t,c1,c2,c3)
draws a spiral and

> SpiralRadius (N,t)
computes its radius.

The Gist of SpiralRadius

$\mathrm{xc}=0 ; \mathrm{yc}=0 ; \mathrm{r}=0$
for k in range (N):
theta $=(k * t) *$ math. $\mathrm{pi} / 180$
$\mathrm{L}=\mathrm{k}+1$
\# (xc,yc) $=$ end of the k th edge $\mathbf{x c}=\mathrm{xc}+\mathrm{L}$ *math. cos (theta)
$\mathrm{yc}=\mathrm{yc}+\mathrm{L}$ *math.sin(theta) dist $=$ math.sqrt(xc**2+yc**2) $r=\max (r, d i s t)$
return r

The Gist of SpiralRadius

$\mathrm{xc}=0 ; \mathrm{yc}=0 ; \mathrm{r}=0$
for k in range (N):
theta $=(k * t) *$ math. pi /180
$\mathrm{L}=\mathrm{k}+1$
\# (xc,yc) $=$ end of $k t h$ edge $\mathbf{x c}=\mathrm{xc}+\mathrm{L}$ *math. cos (theta)
$\mathrm{yc}=\mathrm{yc}+\mathrm{L} \mathrm{m}_{\mathrm{math}} . \sin ($ theta) dist $=$ math.sqrt(xc**2+yc**2)
$r=\max (r, d i s t)$
return r

The Heading

For the k-th edge, here is the heading in radians:

$$
\text { theta }=(k * t) * \text { math.pi/180 }
$$

t is the turn angle in degrees

The Gist of SpiralRadius

$\mathrm{xc}=0 ; \mathrm{yc}=0 ; \mathrm{r}=0$
for k in range (N):

$$
\begin{aligned}
& \text { theta }=(k * t) * \text { math.pi/180 } \\
& L=k+1 \\
& \#(x c, y c)=\text { end of } k t h \text { edge } \\
& x c=x c+L * \text { math. cos (theta) } \\
& y c=y c+L * \text { math. sin (theta) } \\
& \text { dist }=\text { math.sqrt }(x c * * 2+y c * * 2) \\
& r=\max (r, d)
\end{aligned}
$$

return r

The Ending Endpoint

Before: $(x c, y c)$ is where the kth edge starts

$$
\begin{aligned}
& x c=x c+L^{\star} \text { math } \cdot \cos (\text { theta) } \\
& \mathrm{yc}=\mathrm{yc}+\mathrm{L}^{\star} \text { math. } \sin (\text { theta })
\end{aligned}
$$

After: $(x c, y c)$ is where the k th edge ends

The Gist of SpiralRadius

$\mathrm{xc}=0 ; \mathrm{yc}=0 ; \mathrm{r}=0$
for k in range (N):
theta $=(k * t) *$ math.pi/180
$\mathrm{L}=\mathrm{k}+1$
\# (xc,yc) $=$ end of the k th edge $\mathrm{xc}=\mathrm{xc}+\mathrm{L}$ *math. cos (theta)
vc $=\mathrm{yc}+\mathrm{L} * \mathrm{math} . \sin (\mathrm{theta})$ dist $=$ math.sqrt(xc**2+yc**2) $r=\max (r, d)$
return r

Computing the max Distance

Is the end of the kith edge further away from $(0,0)$ than all previous endpoints?
dist $=$ math.sqrt(xc**2+yc**2) $r=\max (r, d)$
dist $=$ math.sqrt(xc**2+yc**2) if dist > r:

$$
\mathbf{r}=\text { dist }
$$

A Reverse Problem

Given the turn angle t and a radius r, what is the largest N so that
DrawSpiral (N,t,c1,c2,c3)
fits inside the circle

$$
x^{* *} 2+y^{* *} 2=r^{* *} 2
$$

Example

The circle has radius $r=500$.

DrawSpiral (513, 62,...)

just fits inside

Example

The circle has radius $r=500$.

DrawSpiral (856,162,...)
just fits inside

Let's Design a Function that Returns This Integer

$t=$ turn angle
$r=$ radius
$\mathrm{N}=$ max number edges so spiral radius $<=r$

The Body of nEdges

$\mathbf{k}=0 \quad \#$ Index of current edge
Compute endpoint distance to $(0,0)$ while endpoint inside circle
$\mathbf{k}=\mathbf{k}+1$
Compute endpoint dist to (0,0)
$\mathrm{N}=\mathrm{k}$
return N
$\mathrm{k}=0$
$\mathrm{xc}=1$
yc $=0$
d = math.sqrt(xc**2 + yc**2)
while $\mathrm{d}<=\mathrm{r}:$

$$
\mathrm{k}=\mathrm{k}+1
$$

$$
\text { theta }=(k * t) * \text { math.pi/180 }
$$

$$
x c=x c+(k+1) * \text { math.cos (theta) }
$$

$$
\mathrm{yc}=\mathrm{yc}+(\mathrm{k}+1) \star \text { math.sin(theta) }
$$

$$
\mathrm{d}=\text { math.sqrt(xc**2 }+\mathrm{yc} * * 2)
$$

return $k-1$

4. Streaks in a Coin Toss Sequence

Coin Toss Strings

S is a coin toss string if it is made up of H^{\prime} s and T^{\prime}

$$
s=\text { 'ННТНTTTHTННТНТТТ' }
$$

Streaks

$\mathbf{s}=$ 'HНTHTTTHTHНTHTTT'

$s[0: 2]$
 a length-2 streak

Streaks

s = 'нНТНтТтНтннтнттт'

s[4:7]
 a length-3 streak

Streaks

$\mathbf{s}=$ 'ННТНТТТНТННТТТТТ'

s[12:17]

a length-5 streak

Streak Definition

$s[k: k+n]$ is a length-n streak if
(1) $k+n<=$ len (s)
and
(2) It is either all T^{\prime} s or all $H^{\prime} s$

and

(3) If there is a character before s[k], it is different from s[k].

and

(4) If there is a character after $s[k+n]$, it is different from $s[k+n]$.

Streaks

s = 'ннтнтTTНтннтнтTт'

s[5:7] is NOT a length-2 streak

Rule 3: If there is a character before s[k], it is different from $s[k]$.

isStreak (s,k,n)

$\mathrm{t}=\mathrm{s}[\mathrm{k}: \mathrm{k}+\mathrm{n}]$
if $k+n>l e n(s):$
return False
elif $t . c o u n t(' H ')<n$ and $t . c o u n t(' T ')<n:$
return False
elif $k>0$ and (s [k-1]==s[k]):
return False
elif $(k+n<l e n(s))$ and ($s[k+n-1]==s[k+n])$:
return False
else:
A function can have more
return True than one return

Using isStreak to Find Streaks

s = 'ннтнтттнтнннтнтт'
k isSTreak (s,k,3)
$0 \quad$ False

Using isStreak to Find Streaks

 s = 'ннтнтттнтнннтнтт'k isSTreak (s,k,3)
$\begin{array}{ll}0 & \text { False } \\ 1 & \text { False }\end{array}$

Using isStreak to Find Streaks

 s = 'ннтнтттнтнннтнтт'k isSTreak (s,k,3)
$\begin{array}{ll}0 & \text { False } \\ 1 & \text { False } \\ 2 & \text { False }\end{array}$

Using isStreak to Find Streaks

$\mathrm{k} \quad$ isSTreak (s,k,3)

0	False
1	False
2	False
3	False

Using isStreak to Find Streaks

$\mathbf{s}=$ 'НнТНТТТНТНннТНТт'

$\mathrm{k} \quad$ isSTreak (s,k,3)

0	False
1	False
2	False
3	False
4	True

Using isStreak to Find Streaks

def FindStreak(s,n):
k=0
while $k<l e n(s)$ and (not isStreak (s, k, n) : \# $s[k: k+n]$ is not a streak
$\mathbf{k}=\mathbf{k}+1$
if $k<l e n(s):$
\# isStreak (s,k,n) is True
return k
else:
\# k==len(s) is True
return -1

