
2/26/2015

1

10. Iteration: The while-Loop

 Topics:

 repetition

 the while statement

 generating sequences

 summation
 looking for patterns in strings

Open-Ended Iteration

So far, we have only addressed iterative

problems in which we know (in advance) the

required number of repetitions.

Not all iteration problems are like that.

Some iteration problems are open-ended

Stir for 5 minutes vs Stir until fluffy.

Examples

Keep tossing a coin until the number of heads

and the number of tails differs by 10.

Repeat this until |L-W| <= .000001:

 L = (L + W)/2

 W = x/L

 In both cases, we do not know the number of iterations that will be required

The While Loop

We introduce an alternative to the for-loop

called the while-loop.

The while loop is more flexible and is essential

for ̀ `open ended’ ’ iteration.

How Does a While-Loop Work?

 A simple warm-up example: sum the

first 5 whole numbers and display the

 summation process.

Two Solutions

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

s = 0

for k in range(1,6):

 s = s + k

 print k,s

2/26/2015

2

The While-Loop Solution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

1 1

2 3

3 6

4 10

5 15

Observation: k is used for counting, s is used for the running sum, and the while
is used to control the repetition of the indented code.

The Solution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

1 1

2 3

3 6

4 10

5 15

We call this the “loop body”

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 0 k ->

 0 s ->

At the start, k and s are initialized

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 0 k ->

 0 s ->

Is the boolean condition true?

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 0 k ->

 0 s ->

Yes, so execute the loop body

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 1 k ->

 1 s ->

1 1

2/26/2015

3

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 1 k ->

 1 s ->

Is the boolean condition true?

1 1

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 1 k ->

 1 s ->

Yes, so execute the loop body

1 1

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 2 k ->

 3 s ->

1 1

2 3

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 2 k ->

 3 s ->

Is the boolean condition true?

1 1

2 3

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 2 k ->

 3 s ->

Yes, so execute the loop body

1 1

2 3

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 3 k ->

 6 s ->

1 1

2 3

3 6

2/26/2015

4

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 3 k ->

 6 s ->

Is the boolean condition true?

1 1

2 3

3 6

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 3 k ->

 6 s ->

Yes, so execute the loop body

1 1

2 3

3 6

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 4 k ->

 10 s ->

1 1

2 3

3 6

4 10

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 4 k ->

 10 s ->

Is the boolean condition true?

1 1

2 3

3 6

4 10

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 4 k ->

 10 s ->

Yes, so execute the loop body

1 1

2 3

3 6

4 10

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 5 k ->

 15 s ->

1 1

2 3

3 6

4 10

5 15

2/26/2015

5

Trace the Execution

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

 5 k ->

 15 s ->

1 1

2 3

3 6

4 10

5 15
Is the boolean condition true?
NO! The loop is over.

The While-Loop Mechanism

while A Boolean Expression

 The Loop Body

 :

The Boolean expression is checked. If it is true,
then the loop body is executed. The process is
repeated until the Boolean expression is false.
At that point the iteration terminates.

The Broader Context

while A Boolean Expression

 The Loop Body

 :

 Code that comes before the loop

 Code that comes after the loop

Every variable involved in the Boolean expression must be initialized.

The Broader Context

while A Boolean Expression

 The Loop Body

 :

 Code that comes before the loop

 Code that comes after the loop

After the loop terminates the next statement after the loop is executed.

The Broader Context

while A Boolean Expression

 The Loop Body

 :

 Code that comes before the loop

 Code that comes after the loop

Indentation defines the loop body

Back to Our Example

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

 print k,s

1 1

2 3

3 6

4 10

5 15

Let’s move the print statement outside the loop body

2/26/2015

6

Back to Our Example

k = 0

s = 0

while k < 5:

 k = k + 1

 s = s + k

print k,s

5 15

Only the final value of k and s are reported.

A Modified Problem

Print the smallest k so that the sum of

the first k whole numbers is greater than 50.

The answer is 10 since

 1+2+3+4+5+6+7+8+9 = 45
and

 1+2+3+4+5+6+7+8+9+10 = 55

“Discovering’’ When to Quit

k = 0

s = 0

while s < 50:

 k = k + 1

 s = s + k

print k,s

While loops can handle iterative situations even if we do not know the required
number of repetitions.

10 55

“Discovering’’ When to Quit

k = 0

s = 0

while s < 50:

 k = k + 1

 s = s + k

print k,s

 9 k ->

 45 s ->

Suppose this is
the situation:

“Discovering’’ When to Quit

k = 0

s = 0

while s < 50:

 k = k + 1

 s = s + k

print k,s

 9 k ->

 45 s ->

The boolean condition
says “OK”

“Discovering’’ When to Quit

k = 0

s = 0

while s < 50:

 k = k + 1

 s = s + k

print k,s

 10 k ->

 55 s ->

2/26/2015

7

“Discovering’’ When to Quit

k = 0

s = 0

while s < 50:

 k = k + 1

 s = s + k

print k,s

 10 k ->

 55 s ->

The boolean condition
now says “stop”

“Discovering’’ When to Quit

k = 0

s = 0

while s < 50:

 k = k + 1

 s = s + k

print k,s

 10 k ->

 55 s ->

Control passes to the next statement
after the end of the loop body

10 55

Defining Variables

k = 0

s = 0

while s < 50:

 # s is the sum 1+ … + k

 k = k + 1

 s = s + k

print k,s

The “property” that s is the sum of the first k whole numbers is invariant
throughout the iteration. Defining variables in this fashion promotes correctness.

Let’s Revisit the sqrt Problem
Again!

For-Loop Solution

def sqrt(x):

 x = float(x)

 L = x

 W = 1

 for k in range(5):

 L = (L + W)/2

 W = x/L

 return L

The number of iterations
is ``hardwired’’ into the
implementation.

5 may not be enough--
an accuracy issue

5 may be too big--
efficiency issue

What we Really Want

def sqrt(x):

 x = float(x)

 L = x

 W = 1

 for k in range(5):

 L = (L + W)/2

 W = x/L

 return L

Iterate until L
and W are really
close.

2/26/2015

8

What we Really Want

for k in range(5):

 L = (L + W)/2

 W = x/L

while abs(L-W)/L > 10**-12

 L = (L + W)/2

 W = x/L

Not this:

But this:

What we Really Want

while abs(L-W)/L > 10**-12

 L = (L + W)/2

 W = x/L

This says
 “keep iterating as long as the
 discrepancy relative to L is
 bigger than 10**(-12)”

What we Really Want

while abs(L-W)/L > 10**-12

 L = (L + W)/2

 W = x/L

When the loop terminates, the
discrepancy relative to L will be less
than 10**(-12)

Template for doing something
an Indefinite number of times

Initializations

while not-stopping condition :

 # do something

A Common Mistake

while abs(L-W)/L < 10**-12

 L = (L + W)/2

 W = x/L

Forgetting that we want a
 NOT stopping condition

The Up/Down Sequence
Problem

Pick a random whole number between

one and a million. Call the number n and
repeat this process until n ==1:

 if n is even, replace n by n/2.
 if n is odd, replace n by 3n+1

2/26/2015

9

The Up/Down Sequence
Problem

 99 741 157 20 1

298 2224 472 10 4

149 1112 136 5 2

438 556 68 16 1

219 278 34 8 etc

658 139 17 4

329 418 52 2

988 209 26 1

494 628 13 4

247 314 40 2

The Central Repetition

if m%2 == 0:

 m = m/2

else:

 m = 3*m+1

Note cycling once m == 1:
 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, …

Shuts Down When m==1
n = input(‘m = ‘)

m = n

nSteps = 0

while m > 1:

 if m%2==0:

 m = m/2

 else:

 m = 3*m + 1

 nSteps = nSteps+1

print n,nSteps,m

nSteps
keeps track
of the
number
of steps

Avoiding Infinite Loops

nSteps = 0

maxSteps = 200

while m > 1 and nSteps<maxSteps:

 if m%2==0:

 m = m/2

 else:

 m = 3*m + 1

 nSteps = nStep+1

Introduce Boolean-Valued
Functions

The Boolean condition that controls a
while loop can be very complicated.

It is sometimes a good idea to
simplify things using Boolean-valued
 functions.

An Example: Looking for
Patterns in a “Coin Toss”

String

S = ‘HHTHTTHHTHHTHTTH’

Made of of H’s and T’s

2/26/2015

10

Generating a Coin Toss String

def GenCoinToss(n):

 s = ''

 for k in range(n):

 i = randi(1,2)

 if i==1:

 s = s + 'H'

 else:

 s = s + 'T'

 return s

Repeated
concatenation
with random
choice for
H and T

Let’s Look for ‘Sandwiches’ in
a CoinToss String

t is length-m sandwich string if either

 its first and last characters are ‘H’
 and all the rest are T’s
or
 its first and last characters are T
 and the rest are H’s,

 HTTTTTH THHHHHHHHHHHHT

A Boolean-Valued Function

def isSandwich(t):

 n = len(t)

 Meat = t[1:n-1]

 Type1 = s[0]=='H' and s[n-1]=='H'

 Type1 = Type1 and Meat.count('T')==n-2

 Type2 = s[0]=='T' and s[n-1]=='T'

 Type2 = Type2 and Meat.count('H')==n-2

 return Type1 or Type2

Type1 and Type2 are Boolean Variables

Boolean Variables

This is an assignment statement:

 Type1 = s[0]=='H' and s[n-1]=='H‘

This expression evaluates
to True or False.

The result is stored in Type1

 Look for a Length-5 Sandwich

s = some long coin toss string

k = 0

n = len(s)

t = s[0:5]

while k+5<=n and (not isSandwich(t)):

 k+=1

 t = s[k:k+5]

if k+5==n+1:

 print ‘there is no sandwich’

else

 print ‘there is a sandwich’

The While Condition

s = some long coin toss string

k = 0

n = len(s)

T = s[0:5]

while k+5<=n and (not isSandwich(t)):

 k+=1

 t = s[k:k+5]

Keep iterating as long as k+5<=n AND
t is NOT a sandwich.

2/26/2015

11

When the Loop Ends

s = some long coin toss string

k = 0

n = len(s)

T = s[0:5]

while k+5<=n and (not isSandwich(t)):

 k+=1

 t = s[k:k+5]

Either k+5==n+1 or t is a sandwich

 Look for a Length-5 Sandwich

s = some long coin toss string

k = 0

n = len(s)

t = s[0:5]

while k+5<=n and (not isSandwich(t)):

 k+=1

 t = s[k:k+5]

if k+5==n+1:

 print ‘there is no sandwich’

else

 print ‘there is a sandwich’

