
2/23/2015

1

9. Random Simulations

Topics:

 The class random

 Estimating probabi li ties

 Estimating averages

 More occasions to practice iteration

The random Module

Contains functions that can be used

in the design of random simulations.

We wi ll practice with these:

 random.randint(a,b)

 random.uniform(a,b)

 random.normalvariate(mu,sigma)

 And as a fringe benefit, more practice with for-loops

Generating Random Integers

 That is, we randomly select an element from the set {a,a+1,…,b} and assign it to n

If a and b are initialized integers with a < b
then
 i = random.randint(a,b)

assigns to i a “random” integer that satisfies

 a <= i <= b

What Does “Random” Mean?

import random

for k in range(1000000):

 i = random.randint(1,6)

 print i

The output would “look like” you rolled a dice
one million times and recorded the outcomes.

No discernible pattern.

Roughly equal numbers of 1 ’s, 2’s, 3’s, 4’ s, 5’s, and 6’s.

Renaming Imported Functions

import random

for k in range(1000000):

 i = random.randint(1,6)

 print i

from random import randint as randi

for k in range(1000000):

 i = randi(1,6)

 print i

 Handy when the names are long or you just want to name things your way.

Random Simulation

We can use randint to simulate genuinely

random events, e.g.,

Flip a coin one mi llion times and record the

number of heads and tai ls.

2/23/2015

2

Coin Toss

from random import randint as randi

N = 1000000

Heads = 0

Tails = 0

for k in range(N):

 i = randi(1,2)

 if i==1:

 Heads = Heads+1

 else:

 Tails = Tails+1

print N, Heads, Tails

The “count” variables Heads
and Tails are initialized

randi returns 1 or 2

Convention: “1” is heads

Convention: “2” is tails

A Handy Short Cut

Incrementing a variable is such a common

calculation that Python supports a shortcut.

These are equivalent:

 x += 1

 x = x+1

 x += c is equivalent to x = x+c

Coin Toss

from random import randint as randi

N = 1000000

Heads = 0

Tails = 0

for k in range(N):

 i = randi(1,2)

 if i==1:

 Heads+=1

 else:

 Tails+=1

print N, Heads, Tails

The “count” variables Heads
and Tails are initialized

randi returns 1 or 2

Convention: “1” is heads

Convention: “2” is tails

Sample Outputs

 N = 1000000

Heads = 500636

Tails = 499364

 N = 1000000

Heads = 499354

Tails = 500646

Different runs produce
different results.

This is consistent with
what would happen if
we physically tossed a
coin one million times.

Estimating Probabilities

You roll a dice. What is the probability

that the outcome is “5”?

Of course, we know the answer is 1/6. But

let’s “discover” this through simulation.

Dice Roll

from random import randint as randi

N = 6000000

count = 0

for k in range(N):

 i = randi(1,6)

 if i==5:

 count+=1

prob = float(count)/float(N)

print N, count, prob

2/23/2015

3

Dice Roll

from random import randint as randi

N = 6000000

count = 0

for k in range(N):

 i = randi(1,6)

 if i==5:

 count+=1

prob = float(count)/float(N)

print prob

N is the number of
“experiments”.

i is the outcome of
an experiment

prob is the
probability
the outcome
is 5

Dice Roll

from random import randint as randi

N = 6000000

count = 0

for k in range(N):

 i = randi(1,6)

 if i==5:

 count+=1

prob = float(count)/float(N)

print prob

Output:

 .166837

Discovery Through Simulation

Roll three dice.

What is the probabi li ty that the three

outcomes are all different ?

If you know a li ttle math, you can do this

without the computer. Let’s assume that

we don’t know that math.

Solution

N = 1000000

count = 0

for k in range(1,N+1):

 d1 = randi(1,6)

 d2 = randi(1,6)

 d3 = randi(1,6)

 if d1!=d2 and d2!=d3 and d3!=d1:

 count +=1

 if k%100000==0:

 print k,float(count)/float(k)

 Prints snapshots of the probability estimates every 100,000 trials

Note the

3 calls to
randi

Sample Output

 k count/k

 100000 0.554080

 200000 0.555125

 300000 0.555443

 400000 0.555512

 500000 0.555882

 600000 0.555750

 700000 0.555901

 800000 0.556142

 900000 0.555841

 1000000 0.555521

Note how we
say “sample
output” because
if the script is
run again, then
we will get
different
results.

Educated guess:
true prob = 5/9

Generating Random Floats

 The actual probability that x is equal to a or b is basically 0.

If a and b are initialized floats with a < b
then
 x = random.uniform(a,b)

assigns to x a “random” float that satisfies

 a <= x <= b

2/23/2015

4

What Does Random Mean?

Suppose

The probabi li ty that

 L <= random.uniform(a,b) <= R

i s

 (R-L) / (b-a)

a R L b

Illustrate the Uniform Distribution

from random import uniform as randu

N = 1000000

a = 0; b = 1000; L = 100; R = 500

count = 0

for k in range(N):

 x = randu(a,b)

 if L<=x<=R:

 count+=1

prob = float(count)/float(N)

fraction = float(R-L)/float(b-a)

print prob,fraction

Pick a float in the interval [0,1000]. What is the prob that it is in [100,500]?

Sample Output

Estimated probability: 0.399928

 (R-L)/(b-a) : 0.400000

Estimating Pi Using
random.uniform(a,b)

Idea:

Set up a game whose outcome tells us

something about pi .

This problem solving strategy is called

Monte Carlo. It is widely used in certain

areas of science and engineering

The Game

Throw darts at the

2x2 cyan square that

is centered at (0,0).

If the dart lands in

the radius-1 disk, then

count that as a ”hit”.

Facts About the Game
Area of square = 4

Area of disk = pi since

i t has radius = 1.

Ratio of hits to throws

should approximate

pi/4. Thus

4*hits/throws “=“ pi

2/23/2015

5

Example

1000 throws

776 hits

Pi = 4*776/1000

 = 3.104

When Do We Have a Hit?

The boundary of the disk is given by

 x**2 + y**2 = 1

If (x,y) is the coordinate of the dart throw,

then it is inside the disk if

 x**2+y**2 <= 1

i s True.

Solution

from random import uniform as randu

N = 1000000

Hits = 0

for throws in range(N):

 x = randu(-1,1)

 y = randu(-1,1)

 if x**2 + y**2 <= 1 :

 # Inside the unit circle

 Hits += 1

piEstU = 4*float(Hits)/float(N)

Note the

2 calls to
randu

Repeatability of Experiments

In science, whenever you make a discovery
through experimentation, you must provide
enough detai ls for others to repeat the
experiment.

We have “discovered” pi through random
simulation. How can others repeat our
computation?

random.seed

What we have been calling random numbers are
actually pseudo-random numbers.

They pass rigorous statistical tests so that
we can use them as if they are truly random

But they are generated by a program and are
anything but random.

The seed function can be used to reset the
algorithmic process that generates the pseudo
random numbers.

Repeatable Solution

from random import uniform as randu

from random import seed

N = 1000000; Hits = 0

seed(0)

for throws in range(N):

 x = randu(-1,1); y = randu(-1,1)

 if x**2 + y**2 <= 1 :

 Hits += 1

piEstU = 4*float(Hits)/float(N)

Now we will

get the same
answer every

time

2/23/2015

6

An Example that Uses Both
randi and randu

Repeat:

 1. Position a square randomly in the
 figure window.

 2. Choose its side length randomly.

 3. Determine its ti lt randomly

 4. Color it cyan, magenta, or, yellow
 randomly.

Sample Output

Getting Started
from random import uniform as randu

from random import randint as randi

from simpleGraphicsE import *

n = 10

MakeWindow(n,bgcolor=BLACK)

for k in range(400):

 # Draw a random colored square

 pass

ShowWindow()

Note the

3 calls to
randi

“pass” is a necessary place holder. Without it, this script will not run

Positioning the square

x = randu(-n,n)

y = randu(-n,n)

The figure window is bui lt from
MakeWindow(n).

We choose x randomly from the
interval [-n,n].

We also choose y randomly from the
interval [-n,n].

The Size of the square

s = randu(0,n/3.0)

Let’s make the squares no bigger than
n/3 on a side.

The tilt of the square

t = randi(0,45)

Pick an integer from 0 to 45 and
rotate the square that many degrees.

2/23/2015

7

The Color of the square

i = randi(1,3)

if i==1;

 c = CYAN

elif i==2:

 c = MAGENTA

else:

 c = YELLOW

With probabi li ty 1/3, color it cyan
With probabi li ty 1/3 color it magenta
With probabi li ty 1/3, color it yellow.

The Final Loop Body
x = randu(-n,n)

y = randu(-n,n)

s = randu(0,n/3.0)

t = randi(0,45)

i = randi(1,3)

if i==1:

 c = CYAN

elif i==2:

 c = MAGENTA

else:

 c = YELLOW

DrawRect(x,y,s,s,rotate=t,color=c)

The side

The center

The tilt

The color

Developing For-Loop Solutions

Illustrate the thinking associated with
the design of for-loops

Again we illustrate the methodology of

stepwise refinement.

An example…

A Game: TriStick

Pick three sticks each having a random
length between zero and one.

You win if you can form a triangle
whose sides are the sticks. Otherwise
you lose.

Win:

Lose:

Problem

Estimate the probability of winning

a game of TriStick by simulating a
million games and counting the number

of wins.

2/23/2015

8

Pseudocode

Initialize running sum variable.

Repeat 1,000,000 times:
 Play a game of TriStick by picking

 the three sticks.

 If you win
 increment the running sum

Estimate the probability of winning

Refine…

Initialize running sum variable.

wins = 0

for n in range(1000000):

 Play the nth game of TriStick by

 picking the three sticks.
 If you win
 increment the running sum.

Estimate the prob of winning

p = float(wins)/1000000

Refine the Loop Body

 Play the nth game of TriStick by picking
the three sticks.

 If you win

 increment the running sum.

a = randu(0,1)

b = randu(0,1)

c = randu(0,1)

if a<b+c and b<=a+c and c<=a+b:
 wins +=1

The 3 sticks

Key Problem-Solving
Strategy

Progress from pseudocode to Python

through a sequence of refinements.

Comments have an essential role during

the transitions. They remain all the
way to the finished code.

Generating floats from
the Normal Distribution

Generating floats from
the Normal Distribution

If mu and sigma (positive) are floats, then

 x = random.normalvariate(mu,sigma)

assigns to x a “random” float sampled from the
normal distribution with mean mu and standard
deviation sigma

2/23/2015

9

Normal Distribution
Mean = 0, Standard Deviation = 1

Typical Situation: Test Scores

from random import normalvariate as randn

for k in range(450):

 x = randn(70,7)

 print round(x)

This would look like a report of test scores
from a class of 450 students.

The mean is approximately 70 and the standard
deviation i s approximately 7.

Back to Computing Pi

Using
random.uniform

Using
random.normalvariate

Back to Computing Pi

Using
random.uniform

Using
random.normalvariate

No!

More on Standard Dev

Generate a mi llion random numbers using

 random.normalvariate(mu,sigma)

and confirm that the generated data has

Mean mu and std sigma

Checking Out randn

N = 1000000; sum1 = 0; sum2 = 0

mu = 70; sigma = 7

for k in range(N):

 x = randn(mu,sigma)

 sum1 += x

 sum2 += (x-mu)**2

ApproxMean = float(sum1)/float(N)

ApproxSTD = sqrt(float(sum2)/float(N))

Sample Output: 70.007824 6.998934

2/23/2015

10

Final Reminder

randi, randu, and randn are RENAMED

versions of

 random.randint

 random.uniform

 random.normalvariate

