
2/4/2015

1

5. Introduction to Procedures

Topics:

 The module simpleGraphics

 Creating and Showing figures

 Drawing Rectangles, Disks, and Stars

 Optional arguments

 Application Scripts

Procedures

We continue our introduction to functions
with a focus on procedures.

Procedures are functions that do not
return a value.

Instead, they “do something.”

Graphics is a good place to illustrate the
idea.

The Module simpleGraphics
Has Five Procedures

MakeWindow

ShowWindow

DrawRect

DrawDisk

DrawStar

simpleGraphics.py

We will use this
module to make
designs that
involve
rectangles,
disks, and stars.

Examples that We
Can do Right Now*

* Right Now we only know about assignment statements and if-constructs.

Looks like we will be able to draw tilted rectangles

An Example We Can Do
Right Now

How
does
color
work?

What
if we
had
100 rows
each with
100 stars ?

Anticipating loops.

An Example We Can Do
Right Now

Xeno’s Paradox: Will we ever reach the right edge?

2/4/2015

2

An Example We Can Do
Right Now

White Rectangle + Red Rectangle + White Disk + Red Disk + Tilted White Star

An Example We Can Do
Right Now

Let’s
write a
function
to draw
this:

Then
apply it
four
times.

Functions calling other functions.

After We Learn About Iteration…

What if there were billions and billions of stars? Will need loops.

After We Learn About Iteration…

How long before the square is covered? Need loops.

After We Learn About Recursion…

Random Mondrian. Repeatedly cut a rectangle into 4 smaller rectangles.

Now lets show how to use the
five procedures in simpleGraphics:

 MakeWindow

 ShowWindow

 DrawRect

 DrawDisk

 DrawStar

2/4/2015

3

First: Create a Figure Window

You cannot create any designs until you
have a figure into which you can “drop”
rectangles, disks, and stars.

MakeWindow

from simpleGraphics import *

n = 5

MakeWindow(n)

Here we have created
a figure with labeled axes
that is ready to display
things in the square defined
by
 -5<=x<=+5, -5<=y<=5

MakeWindow

from simpleGraphics import*

n = 5

MakeWindow(n,labels=False)

The “default” is to label
the axes.

So this is what you must
do to suppress the
labeling.

We are using import * to save space and because it is such a tiny module.

MakeWindow

from simpleGraphics import*

n = 5

MakeWindow(n,bgcolor=PURPLE)

The “default” is to “paint”
the figure white.

So this is what you must
do to set the background
color to something
different.

Color in simpleGraphics

The module has thirteen “built-in” colors.

If a simpleGraphics procedure wants a color,
just “hand over” one of these:

YELLOW PURPLE CYAN ORANGE

RED BLUE GREEN MAGENTA

PINK WHITE BLACK LIGHTGRAY

 DARKGRAY

There is more flexibility than this. More later.

MakeWindow

from simpleGraphics import*

n = 5

MakeWindow(n,labels=False,bgcolor=ORANGE)

You can turn off labeling
and specify a color
in the same call to
MakeWindow.

2/4/2015

4

Optional Arguments

The function MakeWindow has three arguments.

Two of the arguments are “optional”.

When there are several optional arguments,
Their order is immaterial. Equivalent:

 MakeWindow(n,labels=False,bgcolor=ORANGE)

 MakeWindow(n,bgcolor=ORANGE,labels=False)

Note: You need the “assignment” for an optional argument.
 This is illegal: MakeWindow(5,False,ORANGE)

Let’s Draw a Rectangle
with DrawRect

You must tell DrawRect

 - the center of the rectangle.
 - the horizontal dimension of the rectangle
 - the vertical dimension of the rectangle

You have the option of telling DrawRect

 - the fill color
 - the width of the perimeter highlight
 - the rotation angle

DrawRect

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; L=5; W=3

DrawRect(x,y,L,W)

ShowWindow()

The default is a rectangle
with no fill color. So all you
get is the perimeter.

DrawRect

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; L=5; W=3

DrawRect(x,y,L,W,color=MAGENTA)

ShowWindow()

Use the optional color
argument to specify a fill
color.

DrawRect

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; L=5; W=3

DrawRect(x,y,L,W,color=MAGENTA,stroke=6)

ShowWindow()

Use the optional stroke
argument to specify the
boldness of the perimeter
highlight. The default
is stroke = 1

If you don’t want any perimeter highlight, set stroke=0

DrawRect

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; L=5; W=3

DrawRect(x,y,L,W,color=MAGENTA,rotate=30)

ShowWindow()

Use the optional rotate
argument to specify the
counterclockwise rotation
of the rectangle about its
center. (Angle in degrees.)

The default rotation angle is zero.

2/4/2015

5

Let’s Write a Script to Do This

The squares are 9x9, 7x7, 5x5, 3x3, and 1x1.

Nested Squares

DrawRect(0,0,9,9,color=MAGENTA,stroke=10)

DrawRect

DrawRect(0,0,7,7,color=CYAN,stroke=8)

Nested Squares

DrawRect(0,0,5,5,color=YELLOW,stroke=6)

DrawRect

DrawRect(0,0,3,3,color=PURPLE,stroke=4)

Nested Squares

DrawRect(0,0,1,1,stroke=5)

2/4/2015

6

Nested Squares

MakeWindow(6, bgcolor=WHITE)

DrawRect(0,0,9,9,color=MAGENTA,stroke=10)

DrawRect(0,0,7,7,color=CYAN,stroke=8)

DrawRect(0,0,5,5,color=YELLOW,stroke=6)

DrawRect(0,0,3,3,color=PURPLE,stroke=4)

DrawRect(0,0,1,1,stroke=5)

ShowWindow()

Let’s Draw a Disk
with DrawDisk

You must tell DrawDisk

 - the center of the disk.
 - the radius of the disk

You have the option of telling DrawDisk

 - the fill color
 - the width of the perimeter highlight

DrawDisk

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawDisk(x,y,r)

ShowWindow()

The default is a circle
with no fill color. So all you
get is the perimeter.

DrawDisk

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawDisk(x,y,r,color=MAGENTA)

ShowWindow()

Use the optional color
argument to specify a fill
color.

DrawDisk

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawDisk(x,y,r,color=MAGENTA,stroke=6)

ShowWindow()

Use the optional stroke
argument to specify the
boldness of the perimeter
highlight. The default
is stroke = 1

If you don’t want any perimeter highlight, set stroke=0

Let’s Draw This

Rules:

Big circle center at (-4,0)
with radius 4.

Circles are tangent to each
other. Centers on x-axis.

Each circle has half the
radius of its left neighbor.

2/4/2015

7

Draw the First Disk

x = -4

r = 4

DrawDisk(x,0,r,color=MAGENTA,stroke=0)

Draw the Second Disk

x = x + 1.5*r

r = r/2

DrawDisk(x,0,r,color=CYAN,stroke=0)

Draw the Third Disk

x = x + 1.5*r

r = r/2

DrawDisk(x,0,r,color=MAGENTA,stroke=0)

Overall

x = -4; r = 4

DrawDisk(x,0,r,color=MAGENTA,stroke=0)

x = x + 1.5*r; r = r/2

DrawDisk(x,0,r,color=CYAN,stroke=0)

x = x + 1.5*r; r = r/2

DrawDisk(x,0,r,color=MAGENTA,stroke=0)

x = x + 1.5*r; r = r/2

DrawDisk(x,0,r,color=CYAN,stroke=0)

Notice the repetition of the x and r updates. Simpler than figuring
the centers and radii “by hand”. Also gets us ready for loops.

Let’s Draw a Star
with DrawStar

You must tell DrawStar

 - the center of the star.
 - the radius of the star

You have the option of telling DrawStar

 - the fill color
 - the width of the perimeter highlight
 - the rotation angle

DrawStar

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawStar(x,y,r)

ShowWindow()

The default is a star
with no fill color. So all you
get is the perimeter.

Note: the radius of a star is the
distance from its center to
any tip.

2/4/2015

8

DrawStar

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawStar(x,y,r,color=MAGENTA)

ShowWindow()

Use the optional color
argument to specify a fill
color.

DrawStar

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawStar(x,y,r,color=MAGENTA,stroke=6)

ShowWindow()

Use the optional stroke
argument to specify the
boldness of the perimeter
highlight. The default
is stroke = 1

If you don’t want any perimeter highlight, set stroke=0

DrawStar

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawStar(x,y,r,color=MAGENTA,rotate=18)

ShowWindow()

Use the optional rotate
argument to specify the
counterclockwise rotation
of the rectangle about its
center. (Angle in degrees.)

The default rotation angle is zero.

Let’s Talk About Color

The rgb Representation

[0.57 , 0.17, 0.93]

A color is a triple of numbers, each between
zero and one.

The numbers represent the amount of red,
green, and blue.

This is purple:

The Module simpleGraphics
Has Five Procedures and Data

MakeWindow

ShowWindow

DrawRect

DrawDisk

DrawStar

simpleGraphics.py

Data

In this case
the data
encodes the
rgb values
of thirteen
colors

2/4/2015

9

The simpleGraphics Colors

YELLOW = [1.00,1.00,0.00]

CYAN = [0.00,1.00,1.00]

MAGENTA = [1.00,0.00,1.00]

RED = [1.00,0.00,0.00]

GREEN = [0.00,1.00,0.00]

BLUE = [0.00,0.00,1.00]

WHITE = [1.00,1.00,1.00]

BLACK = [0.00,0.00,0.00]

PURPLE = [0.57,0.17,0.93]

LIGHTGRAY = [0.33,0.33,0.33]

DARKGRAY = [0.67,0.67,0.67]

ORANGE = [1.00,0.50,0.00]

PINK = [1.00,0.71,0.80]

These are called
“Global Variables”

Convention: Global Variable Names should be upper case.

Access

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; L=5; W=3

DrawRect(x,y,L,W,color=MAGENTA)

ShowWindow()

When a module is imported, it gives access to
both its functions and its global variables.

Take a look at the Demos ShowRect.py, ShowDisk.py, and ShowStar.py

rgb Arrays

Things like [0.74,1.00,0.34] are called rgb

arrays.

Rule: Square brackets, 3 numbers separated by

commas, each number between 0 and 1.

First number = red value

Second number = green value

Third number = blue value

Using rgb Arrays

Instead of using the predfined colors you can

make up and use your own fill color, e.g.

 C = [0.74,1.00,0.34]

 DrawDisk(0,0,1,color=c)

Google “rgb values” to look at huge tables of

colors and rgb values.

A Note on Managing Figures

MakeWindow(etc)

MakeWindow(etc)

MakeWindow(etc)

ShowWindow()

Three figure windows
will be produced.

The green code defines
what is in the first
window.

The pink and blue code
set up the second
and third windows.

The ShowWindow says.
“Show all the windows.”

Take a look at the Demos ShowRect.py and ShowStar.py

A Final Example

Shows two things.

1. You can write a module that uses other

modules that YOU have written.

2. You can have a module that has both function

definitions and a script.

2/4/2015

10

A Final Example

We write a procedure to draw this

and a script that calls it twice:

and we put them both in the SAME module….

A Final Example

from simpleGraphics import *

def DrawTile(x,y,r,c1,c2,c3):

 DrawRect(x,y,2*r,2*r,color=c1)

 DrawDisk(x,y,r,color=c2)

 DrawStar(x,y,r,color=c3)

if __name__ == '__main__':

 MakeWindow(6,bgcolor=BLACK,labels=False)

 DrawTile(3,0,2,MAGENTA,PURPLE,YELLOW)

 DrawTile(-3,0,2,MAGENTA,PURPLE,YELLOW)

 ShowWindow()

 Tile.py

See the Demo Tile.py In command mode, enter python Tile.py

A Final Example

from simpleGraphics import *

def DrawTile(x,y,r,c1,c2,c3):

 DrawRect(x,y,2*r,2*r,color=c1)

 DrawDisk(x,y,r,color=c2)

 DrawStar(x,y,r,color=c3)

if __name__ == '__main__':

 MakeWindow(6,bgcolor=BLACK,labels=False)

 DrawTile(3,0,2,MAGENTA,PURPLE,YELLOW)

 DrawTile(-3,0,2,MAGENTA,PURPLE,YELLOW)

 ShowWindow()

 Tile.py

See the Demo Tile.py In command mode, enter python Tile.py

This is called
an “Application
Script”

So a Module Can Look Like This

if __name__ == '__main__':

Data

Function
Definitions

Gotta have

Application
 Script

Those are “double underscores” in the if statement.

Summary

1. Procedures “look like” functions without
 the “return.” They “do stuff” but do not
 return values

2. Graphics procedures were used to
 illustrate the idea.

3. Color can be encoded with three numbers
 that indicate the amount of red, green,
 and blue.

4. A single module can house data, functions,
and a script at the same time

procedure

 A function that has no explicit return
 statements that yield a value. A function call
 on a procedure always evaluates to None.

Reference: http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php

Terminology

2/4/2015

11

script

 A program that contains a segment of code like
 this: if __name__ == "__main__":

 Scripts can be run outside of the interactive
 mode. To run a script, type python
 <application name> at the OS command shell.
 When a script is run, it will execute all of the

 code indented under the if-statement above.

Reference: http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php

Terminology

