
2/2/2015 

1 

4. Using Modules and Functions 

Topics: 
 

 Modules 

 Using import 

 Using functions from  math 

 A first look at defining functions 

 

 

 

The Usual Idea of a Function 

 
 
 

          sqrt 

 

 

9 3 

A factory that has inputs and bui lds outputs.  

Why are Functions So 
Important? 

One reason is that they hide detai l and  
enable us to think at a higher level. 
 
Who wants to think about how to 
compute square roots in a calculation that 
i nvolves other more challenging things. 
 
r = (sqrt(250+110*sqrt(5))/20)*E  

A Point of View  

To write a function is to package 
a computational idea in a way that 

others can use it. 
 
Take sqrt… 

Insight  

The act of computing the square root 
of a number  x is equivalent to 
bui lding a square whose area is x. 
 
If you can bui ld that square and measure 

i ts side, then you have sqrt(x). 

Making a Given Rectangle 
“More Square” 

L  

x/L = W 

How can we make this rectangle 
“ more square” while preserving its area? 



2/2/2015 

2 

Observation 

If the square and rectangle  have area x,  
then we see that the sqrt(x) is in between 
L and W. 

Recipe for an Improved L 

L 

x/L 

L = (L+x/L)/2      

x/L 

L 

Take the 
average of the 
length and width 

The Usual Idea of a Function 

x L 

A factory that has inputs and bui lds outputs. 

L = x 

L = (L+x/L)/2 

L = (L+x/L)/2 

L = (L+x/L)/2 

L = (L+x/L)/2 

L = (L+x/L)/2 

How do we make something like        in Python?     

Talking About Functions 

A function has a name and arguments. 

m = max(x,y) 

name arguments 

We say that   max(x,y) i s a function call. 

Built-in Functions 
 

The list of “bui lt-in” Python functions  i s quite 
short.  

 
Here are some of the ones that require 

numerical arguments: 
 
                  max,  min, abs, round 

   

 
 
 

abs(-6) is 6       max(-3,2) is 2       min(9,-7) is -7 

round(6.3) is 6.0    round(3.5) is 4.0    round(-6.3) is -6.0  

Calling Functions 
 

>>> a = 5 

>>> b = 7 

>>> m = max(a**b,b**a) 

>>> diff = abs(a**b–b**a)                   
 

In a function call, arguments can be expressions.  

Thus, the value of the expression  a**b–b**a 

i s passed as an argument to abs. 



2/2/2015 

3 

Functions in Mathematics vs 
Functions in Python 

 
So far our examples look like the kind of 
functions that we learn about in math. 
 
 “In comes one or more numbers and out  
 comes a number.” 
 
However, the concept is more general in  
computing as we wi ll see throughout the course. 
  
 
 

>>> a = 5 

>>> b = 6 

>>> c = 7 

>>> d = 8 

>>> m = max(a**d,d**a,b**c,c**b) 

>>> n = max(a*b*c*d,500) 

The Number of Arguments is  
Sometimes Allowed to Vary 

The max function can have an arbitrary number of arguments  

The Built-In Function len 

A function can have a string argument. 

>>> s = ‘abcde’ 

>>> n = len(s) 

>>> print n 

5 

“In comes a string and out comes its length (as an int)”   

Functions and Type 

A function may only accept arguments of a 

certain type. E.g., you cannot pass an int value 

to the function len: 

>>> x = 10 

>>> n = len(x) 

TypeError: Object of the type int 

                has no len() 

Functions and Type 

On the other hand, sometimes a function is 

designed to be flexible regarding the type 

of values it accepts 

>>> x = 10 

>>> y = 7.0 

>>> z = max(x,y) 

Type-Conversion  Functions 

Keep in mind that  int, float, and str are also 

“bui lt-in” functions.  
 

a = float(22)/float(7) 

b = int(100*a) 

s = ‘pi = ‘ + str(b) 

        

They  convert representations.   “In comes an int and out comes a float 
that represents the same value”   



2/2/2015 

4 

Some Obvious Functions are not 
in the “Core” Python Library! 

>>> x = 9 

>>> y = sqrt(x) 

NameError: name ‘sqrt’ not defined 
 

How can we address this issue? 

Modules 

A way around this is to import functions (and 

other things you may need) from “modules” that  

have been written by experts. 

 

Recall that a module i s a fi le that contains 

Python code. 

 

That fi le can include functions that can be  

imported for your use. 

Widely-Used Modules 

A given Python installation typically comes 

equipped with a collection of standard modules 

that can be  routinely accessed.  

 

Here are some that we wi ll use in CS 1110: 

 

   math  numpy urllib2 

   string scipy PIL 

   random timeit 

 

 

The CS1110  Plan for Learning 
about Functions in Python 

1. Practice using the math module. Get 
solid with the import mechanism. 

 
2. Practice using the simpleMath module. 

Get solid with how functions are 
defined. 

 
3. Practice designing and using your own 

“math-like” functions. 

The Plan Cont’d 
4. Practice using the simpleGraphics 

module. Get solid using procedures that 
produce graphical output. 

 
5. Practice using methods from the string 

class.  
 
6. Practice using the simpleDate module. 

Get solid with how methods and objects 
are defined. 

 Procedures and Methods are special types of functions.  

The Plan Cont’d 

Over the entire semester we keep 
revisiting the key ideas to see how they 
play out in more complicated situations. 

 

All along the way we develop skills for 

  1.  Designing Functions 
  2. Testing Functions 

 
 Part Art, Part Science, Part Engineering 

That’s Software Engineering   



2/2/2015 

5 

By Analogy 

Tricycle in the Driveway. And then… 

Tricycle on the sidewalk. And then… 
2-wheeler w/ trainers. And then… 

2-wheeler no turning. And then… 

2-wheeler and turning in street. And then… 
2-wheeler w/ derailleur. And eventually… 

Tour de France* 
 

 

 
 *But only if you  “test  positive” for Python!   

from math import sqrt 

        : 

r = (sqrt(250+110*sqrt(5))/20)*E 

        : 

Let’s Start by Revisiting 
 import 

kepler.py 

We have already used import: 

Useful functions in  math 

ceil(x)  the smallest integer >= x 

floor(x)  the largest integer <= x 
sqrt(x)  the square root of x 
exp(x)  e**x where e = 2.7182818284… 

log(x)  the natural logarithm of x 
log10(x)  the base-10 logarithm of x 
sin(x)  the sine of x (radians) 

cos(x)  the cosine of x (radians) 
tan(x)  the tangent of x (radians) 
atan2(x,y) the angle whose tangent is y/x 

 
 Legal:   from math import sin,cos,tan,exp,log   

Finding Out What’s in a Module? 

If a module is part of your Python installation, 

then you can find out what it contains like this: 

 

>>> help(‘random’) 

But if the module is “famous” (like all the ones 

we wi ll be using), then just Google it. 

 

 

 

What’s in a Module? 

If you know the name of a particular function 

and want more information: 

 

>>> help(‘math.sqrt’) 

What’s With the “dot” Notation:   math.sqrt?   

from math import * 

        : 

r = (sqrt(250+110*sqrt(5))/20)*E 

x = cos(pi*log(r)) 

        : 

Need a Lot of Stuff from a 
Module? A Tempting Shortcut… 

CarelessKepler.py 

 You now have permission to use everything in the math module by its name.  
However, this can open the door to name conflict. More later    



2/2/2015 

6 

import math  

        : 

r = (math.sqrt(250+110*math.sqrt(5))/20)*E 

x = math.cos(math.pi*math.log(r)) 

        : 

Need a Lot of Stuff from a 
Module? A Safer Way… 

CarefulKepler.py 

 You now have permission to use everything in the math module.  
But you must use its “full name.” The “dot notation” does this. 

Appeciating “Full Names”  

import M1 

import M2 

import M3    

     : 

        
 
 
 
 
                    

        
 
 
 
 
                    

        
 
 
 
 
                    

Your code                      M1     M2     M3    

Unambiguous names in your code even if some  
of the module functions have the same name.    

Appeciating “Full Names”  

from M1 import * 

from M2 import * 

from M3 import *    

     : 

        
 
 
 
 
                    

        
 
 
 
 
                    

        
 
 
 
 
                    

Your code                      M1     M2     M3    

Now function calls in your code can be ambiguous.  
Easy to lose track of things if M1, M2, and M3 
include tons of functions. 

Appeciating “Full Names”  

from M1 import f1 

from M2 import f2 

from M3 import f2    

     : 

        
 
 
 
 
                    

        
 
 
 
 
                    

        
 
 
 
 
                    

Your code                      M1     M2     M3    

Selective importing is ok since you are “on top of” 
exactly what is being imported. And you can 
use the short name, e.g., f1 instead of M1.f1 

The time has come to see how functions are 

actually defined. 

 

To do this we introduce a small “classroom” 

module that we call simpleMath. 

Visualizing simpleMath.py 

Recall that 
a module is 
simply a .py fi le 
that contains 
Python code. 
 
This particular 
module houses 
three functions: 
sqrt, sin, and cos 

simpleMath.py 

 

 

 

 

 

 

 

                  

sqrt 

sin  

cos  



2/2/2015 

7 

How are Functions Defined? 

 I can drive a car without knowing what is under the hood.   

Let’s look at the three function definitions 
in simpleMath not worrying (for now) about 
their inner workings. 
 
This plays nicely with the following fact: 
you can use a function without understanding  
how it works. 
 

A Square Root Function 

The function 
header begins 
with def. 
 
It indicates the 
name of the  
function and 
its arguments. 
 
Note the colon 
and indentation. 

def sqrt(x): 

    x = float(x) 

    L = x  

    L = (L + x/L)/2  

    L = (L + x/L)/2  

    L = (L + x/L)/2 

    L = (L + x/L)/2 

    L = (L + x/L)/2 

    return L 

                                    

A Square Root Function 

This is the body of 
the function.  
 
It computes a value 
L (hopefully a good 
square root.)  
 
The calling program 
wi ll be informed of 
this value because 
of the return 
statement. 

def sqrt(x): 

    x = float(x) 

    L = x  

    L = (L + x/L)/2  

    L = (L + x/L)/2  

    L = (L + x/L)/2 

    L = (L + x/L)/2 

    L = (L + x/L)/2 

    return L 

 
 
 
 
 
 
 
 
 
                                                    

The Cosine and Sine Functions 

def cos(x): 

    x = float(x) 

    y = 1.0-(x**2/2)+(x**4/24)-(x**6/720) 

    return y 

def sin(x): 

    x = float(x) 

    y = x-(x**3/6)+(x**5/120)-(x**7/5040) 

    return y 

They too have headers 

 Again, do not worry about the math behind the implementations.   

The Cosine and Sine Functions 

def cos(x): 

    x = float(x) 

    y = 1.0-(x**2/2)+(x**4/24)-(x**6/720) 

    return y 

def sin(x): 

    x = float(x) 

    y = x-(x**3/6)+(x**5/120)-(x**7/5040) 

    return y 

They too have bodies 

Fruitful Functions 

All three of these functions are fruitful 
functions. 
 
Fruitful functions return a value. 
 
Not all functions are like that. 
 
We wi ll discuss the mechanics of how fruitful 
functions return values later. 



2/2/2015 

8 

Making Functions Usable 

Again, the great thing about functions in 
programming is that you can use a function 
without understanding how it works. 

However, for this to be true the author(s) of 
the function must communicate how -to-use 
information through docstrings and comments. 
There are set ways (rules) for doing this. 

Rule 1. The Module Starts With  
Authorship Comments 

# simpleMath.py 

# Charles Van Loan (cfv3) 

# January 2, 2015 

""" Module to illustrate three simple  

math-type functions. 

 

Very crude implementations for the  

square root, cosine, and sine  

functions.""" 

Module Name, author(s), last-modified date . 

And we follow that format in CS 1110. 

Rule 2. The Module 
Specification 

# simpleMath.py 

# Charles Van Loan (cfv3) 

# January 2, 2015 

""" Module to illustrate three simple  

math-type functions. 

 

Very crude implementations for the  

square root, cosine, and sine  

functions.""" 

Short line, blank line, longer comments. This is 
displayed when you type this: help(‘simpleMath’)  
 

Rule 3. Each Function Starts 
with a Docstring “Specification’’ 

def sqrt(x): 

     """Returns an approximate square  

     root of x. 

     

     Performs five steps of rectangle  

     averaging. 

     

     Precondition: The value of x is a  

 positive number.""" 

Short summary that states what  the function 
returns. Also called the post condition.  

 

Rule 3. Each Function Starts 
with a Docstring “Specification’’ 

def sqrt(x): 

     """Returns an approximate square  

     root of x. 

     

     Performs five steps of rectangle  

     averaging. 

     

     Precondition: The value of x is a  

 positive number.""" 

Longer prose giving further useful information 
to the person using the function.  
 

Rule 3. Each Function Starts 
with a Docstring “Specification’’ 

def sqrt(x): 

     """Returns an approximate square  

     root of x. 

     

     Performs five steps of rectangle 

     averaging. 

     

     Precondition: The value of x is a  

 positive number.""" 

Conditions that the arguments must satisfy 
if the function is to work. Otherwise, no guarantees.   
 



2/2/2015 

9 

The Specification for cos(x) 

def cos(x): 

     """Returns an approximation to the  

 cosine of x. 

     

     Uses a degree-6 polynomial. 

     

     Precondition: x is a number that  

 represents a radian value.""" 

The Specification for sin(x) 

def sin(x): 

     """Returns an approximation to the  

 sine of x. 

     

     Uses a degree-7 polynomial. 

     

     Precondition: x is a number that  

 represents a radian value.""" 

Now let’s compare these three functions  
in the simpleMath module with their  
counterparts in the math module. 

Check out Square Root 

import math 

import simpleMath 

            : 

x = input('x = ') 

MySqrt = simpleMath.sqrt(x) 

TrueSqrt = math.sqrt(x) 

            : 

Show_simpleMath.py 

Check out Square Root 

x = 25 

simpleMath.sqrt(x) =   5.00002318 

      math.sqrt(x) =   5.00000000 

Sample 
Output 

Check out Cosine and Sine 

import math 

import simpleMath 

           : 

theta = input('theta (degrees) = ') 

theta = (math.pi*theta)/180 

MyCos = simpleMath.cos(theta) 

TrueCos = math.cos(theta) 

MySin = simpleMath.sin(theta) 

TrueSin = math.sin(theta) 

           : 

Show_simpleMath.py 



2/2/2015 

10 

Check out Cosine and Sine 

Sample 
Output 

theta (degrees) = 60 

simpleMath.cos(theta) =   0.49996457 

      math.cos(theta) =   0.50000000 

simpleMath.sin(theta) =   0.86602127 

      math.sin(theta) =   0.86602540 

Summary 

1. How to gain access to functions in other 
modules using import. 
 
2. How to define a function using def. 
 
3. How to document modules and functions 
through structured doc strings. 

argument 

 An expression that occurs within the 
 parentheses of a method call. The following 
 call has two arguments: x+y and w+z: 
 min(x+y,w+z) 

 

Terminology 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

docstring 

 A string literal that begins and ends with three 
 quotation marks. Document strings are used to 
 write function specs and are displayed by the 
 help() command. 

 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

Terminology 

fruitful function 

 A function that terminates by executing a 
 return statement, giving an expression whose 
 value is to be returned. Fruitful functions 
 (possibly) return a value other than None. 

 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

Terminology 

function 

 A set of instructions to be carried out. A 
 function is analogous to a recipe in a 
 cookbook. We often separate functions into 
 fruitful functions and procedures. 

 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

Terminology 



2/2/2015 

11 

function body 

 A function consists of a function header 
 followed by the function body, which is 
 indented by four spaces under the header. 
 When the function is called, its body is 
 executed. 

 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

Terminology 

function name 

 The name of the method, defined in the 
 function header. 

 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

Terminology 

function specification 

 The specification of a function defines what 
 the function does. It is used to understand how 
 to write calls on the function. It must be clear, 
 precise, and thorough, and it should mention 
 all parameters, saying what they are used for. It 
 may be given in terms of a precondition and 
 postcondition. Function specifications are 

 typically written as a docstring. 

 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

Terminology 

import 

 The import statement has one of the following 
 forms: 
 
    import <module>        # encapsulate contents in 
 module folder 
    from <module> import * # pull everything into 
 global space 

 

 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

Terminology 

module 

 A file containing global variables, functions, 
 classes and other Python code. The file 
 containing the module must be the same name 
 as the module and must end in ".py" A module 
 is used by either importing it or running it as a 
 script.  

 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

Terminology 

parameter 

 A variable that is declared within the 
 parentheses of the header of a function or 
 method.  

 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

Terminology 



2/2/2015 

12 

post-condition 

 An assertion that indicates what is to be true 
 at the end of execution of a function body or, 
 more generally, of any sequence of statements.  

 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

Terminology 

precondition 

 An assertion that indicates what is to be true 
 at the beginning of execution of a function 
 body. 

 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

Terminology 

return statement 

 A statement which terminates the execution of 
 the function body in which it occurs. If it is 
 followed by an expression, then the function 
 call returns that value. Otherwise, the function 
 call returns None.  

 

Reference:   http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php  

Terminology 


