
3. Conditional Execution

Topics:

 Boolean values

 Relational operators

 if statements

 The Boolean type

Motivation

a = input(‘Enter a pos float: ‘)

b = input(‘Enter a pos float: ‘)

print a**b, b**a

Assign positive float values to variables a
and b and print the values a**b and
b**a.

Problem:

Solution:

Motivation

 ?

Assign float values to variables a and b

and print just the larger of a**b and b**a

Problem:

Solution:

7**2 < 2**7 2**3 < 3**2

Solution Using If-Else

a = input(‘Enter a pos float: ‘)

b = input(‘Enter a pos float: ‘)

aTob = a**b

bToa = b**a

if aTob > bToa:

 print aTob

else:

 print bToa

This is what is called “conditional execution.”

If-Else: How Does it Work?

aTob = a**b

bToa = b**a

if aTob > bToa:

 print aTob

else:

 print bToa

 128 aTob

bToa 49

Let’suppose the value of a is 2 and the value of b is 7.

Solution Using If-Else

aTob = a**b

bToa = b**a

if aTob > bToa:

 print aTob

else:

 print bToa

 128 aTob

bToa 49

The comparison

 aTob > bToa

is called a boolean expression.
It is either True or False

Is the value of aTob larger than the value of bToa ?
.

Solution Using If-Else

aTob = a**b

bToa = b**a

if aTob > bToa:

 print aTob

else:

 print bToa

 128 aTob

bToa 49

The boolean expression
 aTob > bToa

is True so execute
 print aTob

Is the value of aTob larger than the value of bToa ? Yes!
.

If-Else: How Does it Work?

aTob = a**b

bToa = b**a

if aTob > bToa:

 print aTob

else:

 print bToa

 49 aTob

bToa 128

Now let’s suppose the value of a is 7 and the value of b is 2.

If-Else: How Does it Work?

aTob = a**b

bToa = b**a

if aTob > bToa:

 print aTob

else:

 print bToa

 49 aTob

bToa 128

Is the value of aTob larger than the value of bToa ?

If-Else: How Does it Work?

aTob = a**b

bToa = b**a

if aTob > bToa:

 print aTob

else:

 print bToa

 49 aTob

bToa 128

The boolean expression
 aTob > bToa

is False so execute
 print bToa

Is the value of aTob larger than the value of bToa ? No!
.

If-Else: How Does it Work?

aTob = a**b

bToa = b**a

if aTob > bToa:

 print aTob

else:

 print bToa

Note the punctuation and
the indentation.

This is essential syntax.

Forgetting the colons
is a major boo boo!

“Synonym”

aTob = a**b

bToa = b**a

if aTob > bToa:

 print aTob

else:

 print bToa

if a**b > b**a:

 print a**b

else:

 print b**a

In a comparison, we can have general
expressions on either side of the “<“.

The if-else Construction

if

else:

Boolean expression

Statements to execute if the

 expression if True

Statements to execute if the

 expression if False

:

This is an example of conditional execution.
The if-else construction is sometimes called “alternative execution”

The if-else Construction

if

else:

 a**b > b**a

z = b**a

z = a**b

:

print ‘The smaller value is:’,z

The blue box decides
whether the green box
or the pink box is executed.

After that choice is processed, this print is carried out.

Reminder that Indentation Is
Important

If x is even, then the code on the left will print x/2 while the code
on the right will print x/2 twice (on separate lines).

if x%2==0:

 y = x/2

 print y

else:

 y = (x+1)/2

 print y

if x%2==0:

 y = x/2

 print y

else:

 y = (x+1)/2

print y

Another Example

s = s[0:4] + ’ies’

The last character in a string 5-character
string is ’y’.

Change the ‘y’ to ‘i’ and add ‘es’

Problem:

Solution:

Want: ‘carry’ to become ‘carries’
Use string slicing and concatenation: ‘carr’ + ‘ies’

A Modified Problem

If the last character in a 5-character

string s is ’y’, then

 1. change the ‘y’ to ‘i’

 2. add ‘es’

 3. assign the result to a variable plural.

Otherwise, just add ‘s’ and assign the

 result to a variable plural.

This will require the if-else construction.

Solution

if s[4]==‘y’:

 plural = s[0:4] + ’ies’

else:

 plural = s + ‘s’

print s,plural

Remember: s[0:4] names the substring comprised of the first 4 characters.

Discussion of Solution

if s[4]==‘y’:

 plural = s[0:4] + ’ies’

else:

 plural = s + ‘s’

print s,plural

A new comparison is being used.

If you want to check to see if two expressions have
 the same value, use == .

Why? If you say s[4]=‘y’ it looks like an assignment.

Discussion of Solution

if s[4]==‘y’:

 plural = s[0:4] + ’ies’

else:

 plural = s + ‘s’

print s,plural

The print statement is executed after the if-else
is processed. E.g.

 carry carries

Relational Operators

 < Less than

 > Greater than

 <= Less than or equal to

 >= Greater than or equal to

 == Equal to

 != Not equal to

Relational Operators in Action

 x < y True

 2*x > y False

 x <= y True

 x >= y False

 x == y/2 True

 x != y/2. False

x ---> y ---> 3 6

If the expression on the left is a different numerical type
then the expression on the right, everything is converted to float.

Boolean Operations with Strings

Are two strings equal?

>>> s = ‘abc’

>>> s ==‘abc’

True

>>> s == ‘abc ‘

False

Two strings are equal if they have the same length and agree in each position.

Boolean Operations with Strings

>>> s = ‘Dog’

>>> s >‘Horse’

False

>>> s < ‘Horse’

True

>>> s < ‘dog’

True

Alphabetical order. If s < t is true then s comes before t in the “extended
dictionary” based on this ordering of characters:

 ‘ 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’

Alphabetical order?

Relational Operators in Action

 x < y False

 x > y True

‘hoc’+x <= y True

 x >= y True

 x == y[3:] True

 x != x+’ ‘ True

x ---> y ---> ‘key’ ‘hockey’

Comparisons based on alphabetical order.
x<y is false because ‘key’ does not come before ‘hockey’ in the dictionary.

Another Problem

Assume that s1 and s2 are initialized strings.

Write code that prints them in alphabetical
order on separate lines.

Solution

if s1<s2:

 print s1

 print s2

else:

 print s2

 print s1

s1 --->

s2 --->

 ‘cat’

 ‘dog’

 s1 < s2

Is this True or False?

Solution

if s1<s2:

 print s1

 print s2

else:

 print s2

 print s1

s1 --->

s2 --->

 ‘cat’

 ‘dog’

cat

dog

It’s true!
Output:

Solution

if s1<s2:

 print s1

 print s2

else:

 print s2

 print s1

s1 --->

s2 --->

 ‘dog’

 ‘cat’

 s1 < s2

Is this True or False?

Solution

if s1<s2:

 print s1

 print s2

else:

 print s2

 print s1

s1 --->

s2 --->

 ‘dog’

 ‘cat’

cat

dog

It’s false!
Output:

Indentation Is Important

if s1<s2:

 print s1

 print s2

else:

 print s2

print s1

s1 --->

s2 --->

 ‘cat’

 ‘dog’

cat

dog

cat

Output:

What if You Have More than Two
Alternatives?

For example, given a numerical test
score between 0 and 100, print out the
letter grade equivalent according to
these rules:

 A 90-100
 B 80-89
 C 70-79
 U <70

The If-Elif-Else Construction

x = input(‘Score: ‘)

if x>=90:

 grade = ‘A’

elif x>=80:

 grade = ‘B’

elif x>=70:

 grade = ‘C’

else:

 grade = ‘U’

print grade

Read “elif” as “else if”

The If-Elif-Else Construction

x = input(‘Score: ‘)

if x>=90:

 grade = ‘A’

elif x>=80:

 grade = ‘B’

elif x>=70:

 grade = ‘C’

else:

 grade = ‘U’

print grade

Read “elif” as “else if”

Note the
punctuation
and the
indentation.

If-Elif-Else: How it Works

 75 x ---> x = input(‘Score: ‘)

if x>=90:

 grade = ‘A’

elif x>=80:

 grade = ‘B’

elif x>=70:

 grade = ‘C’

else:

 grade = ‘U’

print grade

1. Is this true?
2. No.
3. Proceed to the next
 comparison.

If-Elif-Else: How it Works

 75 x ---> x = input(‘Score: ‘)

if x>=90:

 grade = ‘A’

elif x>=80:

 grade = ‘B’

elif x>=70:

 grade = ‘C’

else:

 grade = ‘U’

print grade

1. Is this true?
2. No.
3. Proceed to the next
 comparison.

If-Elif-Else: How it Works

 75 x ---> x = input(‘Score: ‘)

if x>=90:

 grade = ‘A’

elif x>=80:

 grade = ‘B’

elif x>=70:

 grade = ‘C’

else:

 grade = ‘U’

print grade

1. Is this true?
2. Yes.
3. Execute the statement(s)
 it guards and proceed to
 whatever follows the
 if-elif-else

The indentation scheme “tells” Python what comes after the if-elif-else

If-Elif-Else: How it Works

 95 x ---> x = input(‘Score: ‘)

if x>=90:

 grade = ‘A’

elif x>=80:

 grade = ‘B’

elif x>=70:

 grade = ‘C’

else:

 grade = ‘U’

print grade

1. Is this true?
2. Yes.
3. Execute the statement(s)
 it guards and proceed to
 whatever follows the
 If-elif-else

If-Elif-Else: How it Works

 65 x ---> x = input(‘Score: ‘)

if x>=90:

 grade = ‘A’

elif x>=80:

 grade = ‘B’

elif x>=70:

 grade = ‘C’

else:

 grade = ‘U’

print grade

1. Is this true?
2. No.
3. Proceed to the next
 comparison.

If-Elif-Else: How it Works

 65 x ---> x = input(‘Score: ‘)

if x>=90:

 grade = ‘A’

elif x>=80:

 grade = ‘B’

elif x>=70:

 grade = ‘C’

else:

 grade = ‘U’

print grade

1. Is this true?
2. No.
3. Proceed to the next
 comparison.

If-Elif-Else: How it Works

 65 x ---> x = input(‘Score: ‘)

if x>=90:

 grade = ‘A’

elif x>=80:

 grade = ‘B’

elif x>=70:

 grade = ‘C’

else:

 grade = ‘U’

print grade

1. Is this true?
2. No.
3. Execute “the else”
4. Proceed to what
 follows the if-elif-else.

Equivalent Scripts

x = input(‘Score: ‘)

if x>=90:

 grade = ‘A’

elif x>=80:

 grade = ‘B’

elif x>=70:

 grade = ‘C’

else:

 grade = ‘U’

print grade

I prefer the one on the left. The letter grade is an essential feature of the
computation and having a variable that houses it reminds me of that fact,

x = input(‘Score: ‘)

if x>=90:

 print ‘A’

elif x>=80:

 print ‘B’

elif x>=70:

 print ‘C’

else:

 print ‘U’

Legal Not to Have the “Else”

grade = ‘B’

nApples = input(‘#Apples sent to Prof:‘)

if nApples<10:

 grade = grade + ‘-’

print grade

Let’s review all the “if” variations…

Standard if-else

if

else

 A boolean expression

:

:

Code that is executed after the

whole “if” is processed.

Exactly one of the green boxes is executed

if-elif

if

elif

 A boolean expression

:

:

 Another boolean expression :

If both boolean expressions are false, no green box is executed.
Otherwise, the “first” green box that is “guarded” by a true boolean expression

is executed.

Multiple if-elif With Else

if

elif

:

:

elif

else

The first green box guarded by a true boolean expression is executed.
If they are all false, then the else’s green box is executed.

:

:

Multiple if-elif With No Else

if

elif

:

:

elif

elif

Note that if all the boolean expressions are False, then no green code is executed.
Otherwise the first green box guarded by a true boolean expression is executed

:

:

More Complicated Boolean
Expressions

(x < y) and (x < z) True

(x > y) and (x < z) False

(x < y) and (x > z) False

(x > y) and (x > z) False

x ---> y ---> 3 6 z ---> 9

This showcases the and operator.

The and Operator

 and
--
 True True True

 True False False

 False True False

 False False False

Here and are Boolean-valued expressions

More Complicated Boolean
Expressions

(x < y) or (x < z) True

(x > y) or (x < z) True

(x < y) or (x > z) True

(x > y) or (x > z) False

x ---> y ---> 3 6 z ---> 9

This showcases the or operator.

Example

s = input(‘s: ‘)

if (s[0]==s[3]) and (s[1]==s[2]):

 print ‘palindrome’

else:

 print ‘not a palindrome’

Fact: A length-4 string is a palindrome if
The first and last characters are the same and
The middle two characters are the same

Example

x = input(‘x: ‘)

L = input(‘L: ‘)

R = input(‘R: ‘)

if (L<=x) and (x<=R):

 print ‘Inside’

else:

 print ‘Outside’

Fact: x is inside the interval [L,R] if it is
 no smaller than L and no bigger than R.

x L R

Equivalent Solution

x = input(‘x: ‘)

L = input(‘L: ‘)

R = input(‘R: ‘)

if (L<=x) and (x<=R):

 print ‘Inside’

else:

 print ‘Outside’

x = input(‘x: ‘)

L = input(‘L: ‘)

R = input(‘R: ‘)

if L<=x<=R :

 print ‘Inside’

else:

 print ‘Outside’

The or Operator

 or
--
 True True True

 True False True

 False True True

 False False False

Here and are boolean-valued expressions

Example

s = input(‘s: ‘)

if (s[0]==s[3]) or (s[1]==s[2]):

 print ‘partial palindrome’

else:

 print ‘not a partial palindrome’

Fact: A length-4 string is a partial palindrome if
the first and last characters are the same or if
the middle two characters are the same

Example

x = input(‘x: ‘)

L = input(‘L: ‘)

R = input(‘R: ‘)

if (x<L) or (R<x):

 print ‘Outside’

else:

 print ‘Inside’

Fact: x is inside the interval [L,R] if it is
 no smaller than L and no bigger than R.

x L R

Example

if (x<L) or (R<x):

 print ‘Outside’

else:

 print ‘Inside’

Fact: x is inside the interval [L,R] if it is
 no smaller than L and no bigger than R.

x L R

if (L<=x) and (x<=R):

 print ‘Inside’

else:

 print ‘Outside’

Often you can arrange a
conditional execution in
several ways.

More Complicated Boolean
Expressions

not (x < y) False

not (x > y) True

x ---> y ---> 3 6 z ---> 9

This showcases the not operator.

The not Operator

 not

 True False

 False True

Here is a boolean-valued expression

A Summarizing Example

Input a string. If it has even length, then
hyphenate in the middle:

 baseball base-ball

If it has odd length, then hyphenate around the
middle character:

 frisbee fri-s-bee

The len Function

If ever you need to compute the length of

a string then use the built-in function len.

s = ‘abcdef’

n = len(s)

m = n/2

First = s[:m]

Second = s[m:]

 x ---> ‘abcdef’

 6

 3

‘def’

‘abc’

 n --->

 m --->

Second --->

First --->

The len Function

If ever you need to compute the length of

a string then use the built-in function len.

s = ‘abcdefg’

n = len(s)

m = n/2

First = s[:m]

Second = s[m:]

 x ---> ‘abcdefg’

 7

 3

‘defg’

‘abc’

 n --->

 m --->

Second --->

First --->

So Let’s Solve this Problem

Input a string. If it has even length, then
hyphenate in the middle:

 baseball base-ball

If it has odd length, then hyphenate around the
middle character:

 frisbee fri-s-bee

Developing a Solution

Instead of just showing the solution, let’s
“derive” the solution using a methodology
that is called stepwise refinement.

The course is really about problem solving with the computer.
So developing problem-solving strategies is VERY IMPORTANT

“Reformat” the task.

Read in the string

Compute its length

if the length is even

 Hyphenate in the middle

else

 Hyphenate around around the middle

 character.

Still in English, but it looks a little more like python.

“Reformat” the task.

Read in the string

Compute its length

if the length is even

 Hyphenate in the middle

else

 Hyphenate around around the middle

 character.

Turn these into Python

Refine

s = input(‘Enter a string: ‘)

n = len(s)

if the length is even

 Hyphenate in the middle

else

 Hyphenate around around the middle

 character.

We have turned the first two lines into python.

Refine Some More

s = input(‘Enter a string: ‘)

n = len(s)

if the length is even

 Hyphenate in the middle

else

 Hyphenate around around the middle

 character.

How do we check if the value in n is even?

Refine Some More

h = input(‘Enter a string: ‘)

n = len(s)

if n%2==0:

 # s has even length

 Hyphenate in the middle

else:

 # s has odd length

 Hyphenate around around the middle

 character.

We add comments to summarize what we may assume about the value of n.

Refine Some More

h = input(‘Enter a string: ‘)

n = len(s)

if n%2==0:

 # s has even length

 Hyphenate in the middle

else:

 # s has odd length

 Hyphenate around around the middle

 character.

Figure out the even-length hyphenation

Even-Length Hyphenation

We look at a small example.

These statements

 s = ‘abcdef’

 h = s[0:3] + ‘-’ + s[3:]

 assign ‘abc-def’ to h.

In general:

 m = n/2

 h = s[0:m] + ‘-’ + s[m:]

Refine Some More

h = input(‘Enter a string: ‘)

n = len(s)

if n%2==0:

 # s has even length

 m = n/2

 h = s[0:m] + ‘-’ + s[m:]

else:

 # s has odd length

 Hyphenate around around the middle

 character.

Refine Some More
h = input(‘Enter a string: ‘)

n = len(s)

if n%2==0:

 # s has even length

 m = n/2

 h = s[0:m] + ‘-’ + s[m:]

else:

 # s has odd length

 Hyphenate around around the middle

 character.

Figure out the odd-length hyphenation

Odd-Length Hyphenation

We look at a small example.

This

 s = ‘abcdefg’

 h = s[0:3] + ‘-’ + s[3] + ‘-’ + s[3:]

 assigns ‘abc-d-efg’ to h.

In general:

 m = n/2

 h = s[0:m] + ‘-’ + s[m] + ‘-’+ s[m+1:]

Done!

h = input(‘Enter a string: ‘)

n = len(s)

if n%2==0:

 # s has even length

 m = n/2

 h = s[0:m] + ‘-’ + s[m:]

else:

 # s has odd length

 m = n/2
 h = s[0:m]+‘-’+s[m]+‘-’+s[m+1:]

Summary

1. A Boolean expression evaluates to
 either True or False

2. A Boolean expression is made up of
comparisons that are either True or
False

3. The and, or, not operations combine
boolean values

4. Various if constructions can be used to
organize conditional execution.

boolean
 A primitive type whose values are True and
 False.

Reference: http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php

Terminology

