
2/1/2015

1

 Modules, Scripts, and I/O

 Topics:
 Script Mode
 Modules
 The print and input statements
 Formatting
 First look at importing stuff from
 other modules

The Windchill Calculation

Let’s compute the windchill temperature given
that the air temperature is T = 32F and the wind
is W = 20mph.

Here is the formula courtesy of the National
Weather Service:

 The formula only applies if T <= 50F and W>=3mph.

16.)4275.075.35()6215.074.35(WTTWchill

Use Python in Interactive Mode

>>> Temp = 32

>>> Wind = 20

>>> A = 35.74

>>> B = .6215

>>> C = -35.75

>>> D = .4275

>>> e = .16

>>> WC = (A+B*Temp)+(C+D*Temp)*Wind**e

>>> print WC

19.9855841878

 The print statement is used for displaying values in variables.

Quick Note on print

The line

 >>> print WC

results in the display of the value currently
housed in the variable WC

 More on the print statement later.

Motivating “Script Mode”

What is the new windchill if the wind is
increased from 20mph to 30mph?

Looks like we have to type in the same
sequence of statements. Tedious.

Wouldn’t it be nice if we could store the
sequence of statements in a file and then have
Python “run the file” after we changed
Wind = 20 to Wind = 30 ?

Script Mode

Instead of running Python in interactive mode,
we run Python in script mode.

The code to be run (called a script) is entered
into a file (called a module).

We then ask Python to “run the script”.

2/1/2015

2

What is a Module?

A module is a .py file that contains Python code.

 In CS 1110, these are created using Komodo Edit.

The Module WindChill.py

Temp = 32

Wind = 20

A = 35.74

B = .6215

C = -35.74

D = .4275

e = .16

WC = (A+B*Temp)+(C+D*Temp)*Wind**e

print WC

 Produced using Komodo Edit. This is our first draft.

WindChill.py

Running the Module

Here are the steps to follow in the
command shell:

1. Navigate the file system so that you are
 “in” the same diretory that houses
 WindChill.py

2. Type: python WindChill.py

Details
Suppose I have a directory on my desktop
called TODAY where I keep all my python files
for today’s lecture.

I navigate the file system until I get this
prompt:

C:\Users\cv\Desktop\TODAY>

Asking Python to Run
the Code in WindChill.py

C:\Users\cv\Desktop\TODAY> Python WindChill.py

19.6975841877955

To save space in subsequent slides, we will refer to
C:\Users\cv\Desktop\TODAY> as Blah\Blah>

Multiple Statements on a Line

Temp = 32

Wind = 20

A=35.74;B=.6215;C=-35.74;D=.4275;e=.16

WC = (A+B*Temp)+(C+D*Temp)*Wind**e

print WC

Can put multiple statements on a line. Separate
the statements with semicolons.

WindChill.py

For lecture slides I will sometimes do this to save space.
But in general, it makes for `̀ dense reading’’ and should be avoided.

2/1/2015

3

Module Readability: Comments

Comments begin with a “#”

Temp = 32

Wind = 20

Model Parameters

A=35.74;B=.6215;C=-35.74;D=.4275;e=.16

Compute and display the windchill

WC = (A+B*Temp)+(C+D*Temp)*Wind**e

print WC

WindChill.py

Comments: Guidelines

Wind = 20 # wind speed in miles-per-hour

Comments can also appear on the same line
as a statement:

Everything to the right of the “#” is
part of the comment and not part of the
program.

Comments and Readability

Start each program (script) with a
concise description of what it does

Define each important variable/constant

A chunk of code with a specific task
 should be generally be prefaced
 with a concise comment.

Module Readability: docstrings

A special comment at the top of the module.

“““Computes windchill as a function of

 wind(mph)and temp (Fahrenheit).”””

Temp = 32

Wind = 20

Model Parameters

A=35.74;B=.6215;C=-35.74;D=.4275;e=.16

Compute and display the windchill

WC = (A+B*Temp)+(C+D*Temp)*Wind**e

print WC

WindChill.py

Docstrings: Guidelines

Docstrings are multiline comments that are
delimited by triple quotes: “““

They are strategically located at the beginning
of “important” code sections.

Their goal is to succinctly describe what the
code section is about.

 One example of an “important” code section is a module.

Trying Different Inputs

“““Computes windchill as a function of

 wind(mph)and temp (Fahrenheit).”””

Temp = 32

Wind = 20

Model Parameters

A=35.74;B=.6215;C=-35.74;D=.4275;e=.16

Compute and display the windchill

WC = (A+B*Temp)+(C+D*Temp)*Wind**e

print WC

Can we be more
flexible here?

WindChill.py

2/1/2015

4

Handy Input

If we want to explore windchill as a
function of windspeed and temperature,
then it is awkward to proceed by editing
the module WindChill.py every time
we want to check out a new wind/temp
combination.

The input statement addresses this issue.

The input Statement

The input statement is used to solicit
values via the keyboard:

 input(< string that serves as a prompt >)

 Later we will learn how to input data from a file.

Temp and Wind via input

“““Computes windchill as a function of

 wind(mph)and temp (Fahrenheit).”””

Temp = input(‘Enter temp (Fahrenheit):’)

Wind = input(‘Enter wind speed (mph):’)

Model Parameters

A=35.74;B=.6215;C=-35.74;D=.4275;e=.16

Compute and display the windchill

WC = (A+B*Temp)+(C+D*Temp)*Wind**e

print WC

WindChill.py

A Sample Run

> Enter temp (Fahrenheit) :

The prompt is displayed…

And you respond…

> Enter temp (Fahrenheit) : 15

A Sample Run

> Enter wind speed (mph) :

The next prompt is displayed…

And you respond again…

> Enter wind speed (mph) : 50

A Sample Overall “Dialog”

BlahBlah> python WindChill.py

Enter temp (Fahrenheit) : 15
Enter wind speed (mph) : 50

-9.79781580448

2/1/2015

5

For more on Keyboard Input

See the demo file

 KeyboardInput.py

It describes another mechanism for acquiring
input data called raw_input.

More Readable Output

The print statement can be used to format
output in a way that facilitates the
communication of results.

We don’t need to show wind chill to the
12th decimal!

More Readable Output

“““Computes windchill as a function of

 wind(mph)and temp (Fahrenheit).”””

Temp = input(‘Enter temp (Fahrenheit):’)

Wind = input(‘Enter wind speed (mph):’)

Model Parameters

A=35.74;B=.6215;C=-35.74;D=.4275;e=.16

Compute and display the windchill

WC = (A+B*Temp)+(C+D*Temp)*Wind**e

print ' Windchill :%4.0f' % WC

WindChill.py

The “Dialog” With Formatting

BlahBlah> WindChill

Enter temp (Fahrenheit) : 15
Enter wind speed (mph) : 50

-9.79781580448

BlahBlah> WindChill

Enter temp (Fahrenheit) : 15
Enter wind speed (mph) : 50

 Windchill : -10

print
without
formatting

print
with
formatting

The print Statement

The print statement tries to intelligently
format the results that it is asked to
display.

print w ith formatting puts you in control.

 Later we will learn how to direct output to a file

The print Statement

0.4

0.333333333333

1234.56789012

 For float values, print (by itself) displays up to 12 significant digits

x = 2./5.

print x

x = 1./3.

print x

x = 1234.5678901234

print x

Script:

Output:

2/1/2015

6

The print Statement

1234 12345678

x = 1234

y = 12345678

print x,y

Script:

Output:

 To display more then one value on a line, separate the references with commas.
A single blank is placed in between the displayed values.

The %f Format

x = 1234.123456789

print ‘x = %16.3f’ %x

print ‘x = %16.6f’ %x

print ‘x = %16.9f’ %x

x = 1234.123

x = 1234.123457

x = 1234.123456789

 Formatted print statements are developed by “trial and error.”
It not a topic for memorization and it does not show up on exams.

%f … with Left Justification

x = 1234.123456789

print ‘x = %-16.3f’ %x

print ‘x = %-16.6f’ %x

print ‘x = %-16.9f’ %x

x = 1234.123

x = 1234.123457

x = 1234.123456789

 Formatted print statements are developed by “trial and error.”
It not a topic for memorization and it does not show up on exams.

The %e Format

x = 1234.123456789

print ‘x = %16.3e’ %x

print ‘x = %16.6e’ %x

print ‘x = %16.9e’ %x

x = 1.234e+03

x = 1.234123e+03

x = 1.234123456e+03

 Formatted print statements are developed by “trial and error.”
It not a topic for memorization and it does not show up on exams.

%e with Left-Justification

x = 1234.123456789

print ‘x = %-16.3e’ %x

print ‘x = %-16.6e’ %x

print ‘x = %-16.9e’ %x

x = 1.234e+03

x = 1.234123e+03

x = 1.234123456e+03

 Formatted print statements are developed by “trial and error.”
It not a topic for memorization and it does not show up on exams.

The %d Format

x = 1234

print ‘x = %4d’ %x

print ‘x = %7d’ %x

print ‘x = %10d’ %x

x = 1234

x = 1234

x = 1234

 Formatted print statements are developed by “trial and error.”
It not a topic for memorization and it does not show up on exams.

2/1/2015

7

The %s Format

The Beatles in 1964

Band = ‘The Beatles’

print ‘%s in 1964’ % Band
Script:

Output:

 Strings can be printed too

Formatted Print With More than
1 Source Value

The Beatles in 1964 and 1971

y1 = 1964

y2 = 1971

Band = ‘The Beatles’

print ‘%s in %4d and %4d’ % (Band,y1,y2)

Script:

Output:

 Need parentheses
here.

print with Formatting

print < string with formats > %(< list-of-variables >)

A string that
includes
things like
%10.3f. %3d,
%8.2e, etc

Comma-separated,
e.g., x,y,z. One
variable for each
format marker
in the string. The
Parentheses are
Required if more
than one variable.

For more on Formatted Print

See the demo file

 ShowFormat.py

Why Program Readability and
Style is Important

How we “do business” in commerical, scientific,
and engineering settings increasingly relies on
software.

Lack of attention to style and substandard
documentation promotes error and makes it
hard to build on one another’s software.

Another Detail

All modules that are submitted for grading
should begin with three comments.

WindChill.py

Charlse Van Loan (cfv3)

January 1, 2015

 etc

Name of module

Your name and netid

Date

WindChill.py

2/1/2015

8

A Final Example

Write a script that solicits the area of
a circle and prints out the radius

Preliminary Solution

A = input(‘Enter the circle area: ‘)

r = sqrt(A/3.14)

print r

 The Math: solve A = pi*r*r for r.

Radius.py

We Get an Error

A = input(‘Enter the circle area: ‘)

r = sqrt(A/3.14)

print ‘The radius is %6.3f’ % r

 sqrt is NOT a built-in function

 r = sqrt(A/3.14)

NameError: name 'sqrt' is not defined

Final Solution

from math import sqrt

A = input(‘Enter the circle area: ‘)

r = sqrt(A/3.14)

print ‘The radius is %6.3f’ % r

 The Math: solve A = pi*r*r for r.

We are importing the function sqrt
from the math module.

Radius.py

The Idea Behind import

People write useful code and place it in
modules that can be accessed by others.

The import statement makes this possible.

One thing in the math module is the square
root function sqrt.

If you want to use it in your module just say

 from math import sqrt

Better Final Solution

from math import sqrt,pi

A = input(‘Enter the circle area: ‘)

r = sqrt(A/pi)

print ‘The radius is %6.3f’ % r

 Can import more than one thing from a module. Much more on import later.

We are importing the function sqrt and
the constant pi from the math module.

Radius.py

2/1/2015

9

Sample Run

C:\Users\cv\Desktop\TODAY> Python Radius.py

Enter the circle area: 10

The radius is 1.785

interactive shell

 A program that allows the user to type in
 Python expressions and statements one at a
 time and evalautes them.

Reference: http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php

Terminology

docstring

 A string literal that begins and ends with three
 quotation marks. Document strings are used to
 write function specs and are displayed by the
 help() command.

Reference: http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php

Terminology

module

 A file containing global variables, functions,
 classes and other Python code. The file
 containing the module must be the same name
 as the module and must end in ".py" A module
 is used by either importing it or running it as a
 script.

Reference: http://www.cs.cornell.edu/Courses/cs1110/2015sp/materials/definitions.php

Terminology

