
CS1110 Lab 2 (Feb 3-4, 2015)

First Name: Last Name: NetID:

The lab assignments are very important and you must have a CS 1110 course consultant “tell CMS” that you did
the work. (Correctness does not matter.) This can be done any time up until the start of next week’s lab (Feb
10-11). Thus, if you have trouble with a problem, then you have a week to get help from the teaching staff. If you
finish before the hour is over, then you can leave early or you can work on the current assignment. Indeed, you are
not required to physically attend the labs at all. Just make sure your work is “checked off” by a consultant. And
remember this: The lab problems feed into the assignments and the assignments define what the exams are all about.

1 Boolean Expressions

For each example in this section, write down what you think is the value of the expression. Then use Python in
interactive mode to find out if your mental reasoning is OK or not. If not, try to figure out why Python gave
the answer that it did. Ask a staff member for clarification if necessary. Leave a paper trail of your mistakes and
recoveries in the ”notes column” as a reminder not to make the same mistakes in the future!

1.1 Numerical Examples

Assume that x,y and z are initialized as follows

>>> x = 1

>>> y = 5

>>> z = 10

Now complete this table:

Expression
I Think the

Value Is

Python

Says
Notes

1 x < z True True

2 2*y >= z

3 2*y < z

4 (x>1) or (z!=7)

5 y != (z/2)

6 (x>0) or ((y>0) and (z<0))

7 ((x>0) or (y>0)) and (z<0)

Recall that if you just enter an expression in Interactive Mode, then Python will display the value of that expression.
Thus, something like >>> x < z will result in the display of either “True” or “False”.

1.2 String Examples

Assume that x, y, and z are initialized as follows

>>> x = ’Cornell’

>>> y = ’Harvard’

>>> z = ’Yale’

Now complete this table:

Expression
I Think the

Value Is

Python

Says
Notes

1 x ! = z True True

2 x == ’cornell’

3 len(x) > len(y)

4 y[1:] > z[1:]

5 len(x+z) > len(y)

1.3 A Truth Table

Complete this truth table1:

A B A and B not (A and B) not A not B (not A) or (not B)

True True True

True False False

False True False

False False False

2 If Constructions

The problems in this section are all about how various if constructions work. You will want to download Sticks.py

and AllDiff.py from the Labs page on the course website.

2.1 If-Else With Numerical Comparisons

Suppose you have three sticks. Using them you can form a triangle provided no stick has a length that is greater
than or equal to the sum of the lengths of the other two sticks. Thus, if the three stick lengths are 7, 3, and 9, then
we can form a triangle. On the other hand, if the three stick lengths are 1, 2, and 4, then we cannot form a triangle.
Fill in the blanks with Boolean expressions so that the messages printed give the correct indications.

1You will observe that columns 4 and 7 are the same. This means that not(A and B) and (not A) or (not B) always have the same

value. This connection between the and and or operations is famous. It is called de Morgan’s Law.

2

a = input(’Enter the first stick"s length (assumed positive): ’)

b = input(’Enter the second stick"s length (assumed positive): ’)

c = input(’Enter the third stick"s length (assumed positive): ’)

if __:

print ’Cannot be arranged to make a triangle!’

else:

print ’Can be arranged to make a triangle!’

if __:

print ’Can be arranged to make a triangle!’

else:

print ’Cannot be arranged to make a triangle!’

Develop your solution through a combination of pencil and paper work, mental reasoning and experimentation with
Sticks.py. Inspire confidence in your solution by trying out a wide variety of input values. For example, if you
input 1, 2, and 4 then the script should print

Cannot be arranged to make a triangle!

Cannot be arranged to make a triangle!

2.2 If-Else with String Comparisons

Fill in the blanks with Boolean expressions so that the messages printed correctly indicate whether or not the input
string consists of three different characters or whether there is a repeated character. Thus , ’abb’, ’xxx’, and ’bab’

have repeated characters while ’abc’, ’Aa2’, and ’(2)’ do not.

s = raw_input(’Enter a length-3 string: ’)

if ___:

print ’There is a repeat’

else:

print ’All different’

if ___:

print ’All different’

else:

print ’There is a repeat’

Develop your solution through a combination of pencil and paper work, mental reasoning and experimentation with
AllDiff.py. Inspire confidence in your solution by trying things out on a wide variety of cases. Remember, that
raw input interprets the response as a string and that quotes are not used. Here is a sample dialog

Enter a length-3 string: abc

All Different

All Different

3

2.3 If-Elif-Else

Consider the following

if (1<=x<=2) and (1<=y<=2):

print ’A’

elif (x<1) or (x>2):

print ’B’

elif (y<1) or (y>2):

print ’C’

else:

print ’D’

Fill in the blanks:

If the value of x is 1.3 and the value of y is 1.9 then the output is ’A’.

If the value of x is and the value of y is then the output is ’B’.

If the value of x is and the value of y is then the output is ’C’.

If the value of x is and the value of y is then the output is ’D’.

3 Pretty printing

Down load FormatPlay.py from the Labs page. Here it is

from math import pi

x = 355

y = 113

z = float(x)/float(y)

err = abs(z - pi)

print ’\nNumerator Denominator Quotient Error’

print ’---’

print ’%3d %3d %22.15f %10.6e’ % (x,y,z,err)

It produces the following output:

Numerator Denominator Quotient Error

355 113 3.141592920353983 2.667642e-07

Modify the last line in FormatPlay.py so that the following output is exactly reproduced:

Numerator Denominator Quotient Error

355 113 3.1415929 2.67e-07

Do this by playing with the format specifications and blanks in the string ’%3d %3d %22.15f %10.6e’.

4

4 Errors

If you do something illegal, Python complains. So let’s learn more about about some of those naughty mistakes that
we all make. Download the Jan 29 Lecture Demo Hyphenator.py. Here it is for your convenience

""" Inputs a string and inserts hyphens.

If the string has even length, the hyphen splits

the first and second halves. Otherwise, a hyphen

is inserted on either side of the middle character.

"""

s = input(’Enter a string: ’)

n = len(s)

if n%2==0:

s has even length

m = n/2

h = s[0:m] + ’-’ + s[m:]

else:

s has odd length

m = n/2

h = s[0:m]+’-’+s[m]+’-’+s[m+1:]

print s,h

In the following, we ask you to make a change that induces an error. For each example (1) make the change and
save, (2) run the modified Hyphenator.py, (3) report the error message and explain why Python is complaining, (4)
undo the change thereby restoring the the original Hyphenator.py.

1. In the doc string, change one of the """ to "".

2. Remove the colon after the else.

5

3. Change n%2==0 to n%2=0

4. Change n%2==0 to n%2 = = 0.

5. Remove one of the quotes in the input statement.

6. Change n = len(s) to n = length(s)

7. Remove the "#" from any one of the comments.

8. “Unindent” the first m=n/2 statement.

6

