
CS1110 Spring 2015

Assignment 2: Due Friday Feb 13 at 6pm

You must work either on your own or with one partner. If you work with a partner, you and your partner must
first register as a group in CMS and then submit your work as a group.

You may discuss background issues and general solution strategies with others, but the programs you submit
must be the work of just you (and your partner). We assume that you are thoroughly familiar with the discussion
of academic integrity that is on the course website. Any doubts that you have about “crossing the line” should be
discussed with a member of the teaching staff before the deadline.

Objectives. More practice with strings and conditional execution. Using import. Defining a simple fruitful
function and testing it for correctness. Using graphics procedures to produce a design. Representing color with an
rgb array. The assignment is based on Lectures 4 and 5 and Lab 3.

1 Overview

There are two problems and two modules to submit: GenWeather.py and Sun.py. Both give you practice
defining and using functions. The first problem is numerical and the second is graphical and makes use of
simpleGraphics

For the module GenWeather.py you write a function WindChill that has two string arguments. They
specify temperature (in either Celsius or Fahrenheit) and wind speed (in either mph or kph). The function
then computes and returns the windchill temperature (in either Celsius or Fahrenheit). You also write an
Application Script that is part of the GenWeather.pymodule. It will test your implementation of WindChill.

The module Sun.py has you putting together a function DrawSun that draws a “sun” and an Application
Script that uses DrawSun to produce a nested-sun design.

Start by setting up a folder called A2. Into this folder put the modules Weather.py, GenWeather.py,
simpleGraphics.py, and sun.py that can be downloaded from the Assignments webpage. In the following
when we talk about interactions that involve the command shell and Python interactive mode and related
matters, IT IS ASSUMED that A2 is the CURRENT WORKING DIRECTORY.

2 Windchill

2.1 Background

The commands

>>> import Weather

>>> help(Weather)

will bring up a synopsis of five functions:

FUNCTIONS

WCF(T, W)

Returns the WindChill value in Fahrenheit as float.

Precondition: T and W are numbers that represent

temperature in Fahrenheit and wind speed in miles

per hour respectively. Must have T<=50 and W>=3.

to_C(x)

Returns the Celsius equivalent of x as float.

Precondition: x is a number that represents

a Fahrenheit temperature.

to_F(x)

Returns the Fahrenheit equivalent of x.

Precondition: x is a number that represents

a Celsius temperature.

to_K(x)

Returns the kilometer equivalent of x as float.

Precondition: x is a number that represents

a distance in miles.

to_M(x)

Returns the mile equivalent of x as float.

Precondition: x is a number that represents

a distance in kilometers.

(Note: sometimes “>>>help” does different things in Mac and Linux environments.) Because of the import
command, we have access to these functions and because of the documentation we know how to use them.
For example, here is a sequence that reports the windchill factor in Celsius assuming that the temperature
is -3C and the wind is 20kph:

>>> Temp = -3

>>> Temp = Weather.to_F(Temp)

>>> Wind = 20

>>> Wind = Weather.to_M(Wind)

>>> TheWindChill = Weather.WCF(Temp,Wind)

>>> TheWindChill = Weather.to_C(TheWindChill)

>>> print WindChill

-9.00504160055

Alternatively, we could write a function to handle this kind of metric-based windchill computation. Here is
a module that contains a function that does just that. It also has an Application Script that can be used to
check it out:

Metric.py

""" Contains a function for metric-based windchill and an Application Script

for testing."""

import Weather

def WCC(T,W):

""" returns the Windhill value in Celsius

Precondition: T and W are numbers that represent

temperature in Celsius and wind speed in kilometers

per hour respectively. Must have T<=10 and W>=4.8. """

Temp = Weather.to_F(T)

Wind = Weather.to_M(W)

TheWindChill = Weather.WCF(Temp,Wind)

TheWindChill = Weather.to_C(TheWindChill)

return TheWindChill

#Application Script

if __name__ == ’__main__’:

""" Checks out WindChill on an example

"""

x = WCC(-3,20)

print x

Back in the command shell we can run the Application Script as follows:

> python Metric.py

> -9.00504160055

As expected, this is the same result that we obtained in interactive mode. Notice that in the Application
Script we say WCC(-3,20) and not Metric.WCC(-3,20). Side note. We could implement WCC with a 1-line
function body:

return Weather.to_C(Weather.WCF(Weather.to_F(T),Weather.to_M(W)))

But this kind of cryptic “showing off ” can obscure what’s going on and it invites screw-ups. It’s reckless
coding: “Look Mom, here I am on a busy street riding my bike with no hands.”

2.2 Details About the Function You Are to Write

You are to write a module GenWeather.py that will house a function WindChill(T,W) that can take either
metric or English input. It will also include an Application Script that can be used for testing. The module
GenWeather.py that we supplied is a template. Here are the details about the function WindChill(T,W):

The Input Parameters.

The arguments T and W are strings that specify the temperature and wind speed. This table indicates
the legal options for the argument T:

Input String What it Means
’23F’ twenty three degrees Fahrenheit
’-10F’ minus ten degrees Fahrenheit
’0C’ zero degrees Celsius
’18C’ eighteen degrees Celsius
’16’ sixteen degrees Fahrenheit

Formally, T is a valid temperature string if it encodes an integer or a string that encodes an integer concate-
nated with an ’F’ or a ’C’. Note that T encodes a Fahrenheit temperature if there is no ’F’ or ’C’ at the
end.

Likewise, this table indicates the legal options for the argument W:

Input String What it Means

’10mph’ ten miles-per-hour
’10kph’ ten kilometers-per-hour
’10’ ten miles-per-hour

Formally, W is a valid wind speed string if it encodes a nonnegative integer or a nonegative integer concatenated
with either ’mph’ or ’kph’. Note that W encodes a miles-per-hour windspeed if there is no ’mph’ or ’kph’
at the end.

Your implementation of WindChill is not required to gracefully handle illegal input. WindChill(20F,30),
WindChill(’Brrr’,’Windy’), WindChill(’I am staying home’) each violate the precondition that says
T is a temperature string as defined above and W is a wind speed string as defined above. It is to be expected
that Python will grind to a halt with an error message in these cases. Later in the course we will learn how
design functions that aren’t this rude to the careless user!

The Value to be Returned

WindChill returns the windchill temperature in Fahrenheit if T is in Fahrenheit. If T is in Celsius, then
WindChill returns the windchill temperature in Celsius. However, if the air temperature is greater than
50F or if the wind speed is less than 3mph, then the windchill temperature equals the air temperature. In
all cases, the windchill value that is to be returned should be rounded to the nearest integer. Thus, if the
computed windchill temperature is -5.3F, then -5 should be returned. If the computed windchill temperature

is 16.7C, then 17 should be returned. The built-in function round can be used for rounding. In all cases,
the value returned should have type float.

The Body.

Here are some hints about developing the body of WindChill.

1. Decode the temperature string T obtaining a float variable that houses the temperature in Fahrenheit.
You may have to use Weather.to F.

2. Decode the input windspeed string W obtaining a float variable that houses the windpseed in mph. You
may have to use Weather.to M.

3. Use Weather.WCF to compute the Fahrenheit wind chill temperature. Of course, if the temperature is
greater than 50F or the wind speed is less than 3mph, then the Fahrenheit wind chill temperature is
just the Fahrenheit air temperature.

4. If T specifies a Celsius temperature, then you have to convert the computed windchill to Celsius.

5. Regardless of whether the final windchill is in Fahrenheit or Celsius, round to the nearest integer and
return the result as a float.

To facilitate debugging, you should insert appropriate print statements throughout (1)-(5) to ensure that
your code is doing the right thing. Make sure these debugging print statements are removed in your final

submission to CMS or points will be deducted.

You are required to make effective use of the functions in Weather.py. You will lose points if you say
something like y = 1.8*x+32 instead of y = Weather.to F(x). Of course it is tempting to do such an easy
calculation without using a function, but we are forcing certain issues in this assignment.

2.3 The Application Script

The act of testing a function is the act of inspiring confidence that the function performs as advertised. The
module GenWeather is to include an Application Script that checks out WindChill on a set of representative
test problems. For each test problem it is to display the value produced by WindChill and the “true” value.

For example, earlier we established via interactive mode that the windchill is -9.00504160055 if the
temperature is -3C and the wind is 20kph. We can we regard -9.00504160055 as the “true” value because it
was obtained using correct software: Weather.py. If WindChill(’-3C’,’20kph’) returns -9, then you can
be reasonably confident that WindChill(T,W) will work with any other “C-kph” pair (provided the T is not
too warm and W is not too calm.) But there are many other situations to check out:

T W

ends with ’F’ default
default ends with ’kph’

ends with ’C’ ends with ’mph’

’85F’ ends with ’kph’

ends with ’C’ ’2kph’
: :

Design 10 different “representative” test cases and compute the “actual” windchill using the Weather mod-
ule in interactive mode as we illustrated above. The Application Script should produce ten lines of out-
put. Each should report the input string T, the input string W, the actual windchill, and the value re-
turned by WindChill(T,W) We supply a handy print function for doing this. It is included in the template
GenWeather.py.

Make sure your 10 representative cases are different. WindChill(’-10F’,’40’)and WindChill(’5F’,’20’)

do NOT shed light on two different representative cases. They both are instances of the case “T is a number
string with an F and W is a default mph windspeed string.”

We will check out your implementation on a zillion representative cases so even though you are formally
just checking ten different situations, be sure that your WindChill can handle all valid input combinations.

The theme of testing functions will continue throughout the course. You will learn about more systematic
approaches later on. This is just a preliminary exposure to the idea.

2.4 Submission to CMS

Submit your finished implementation of GenWeather to CMS. Your score will depend on style, the number
of cases from our testing program that your WindChill can handle, and the design of your ten test cases
in the Application Script. Regarding style, review how modules and functions are to be documented using
structured docstrings. (See Lecture 4 and also the Style Guide that is on the course website.) Follow the
rules! You will lose points for substandard documentation. Is your documentation “good enough’? Type
help(GenWeather) in Python interactive mode. Can someone use your WindChill function based on what
they see?

3 The Sun

Now for a really “hot” problem that involves using the procedures in simpleGraphics.py.

3.1 Background

Playing with the Lecture 5 demos and working the graphics problems that are part of Lab 3 will get you
ready for this part of the assignment. Take a look at the template module Sun.py. Using Komodo, enter
your name(s) and date at the top.

You have to complete this module by doing two things. You have to write the function body for DrawSun
and you have to add code to the Application Script so that it displays a specified nesting design.

3.2 Drawing a Single Sun

The function DrawSun(x,y,r,c1,c2,c3) that you are to develop is to produce a sun design like this:

This particular sun is the result of the call DrawSun(0,0,5,MAGENTA,ORANGE,CYAN). Here are some facts
about this graphic. A sun has a disk and 15 uniformly spaces “rays”. We’ll index these starting at the top
and going around clockwise: Ray 1, Ray 2,...,Ray 15. A sun has a center (x, y) and a radius r. The radius
is the distance from the center to the tip of a ray. The “disk part” of a sun is yellow and its radius is αr

where α = .62. Every third ray is colored the same. (Magenta, orange, and cyan in the displayed example
above.) This informal specification of DrawSun(x,y,r,c1,c2,c3) can be made more precise:

• x and y are numbers that specify the center (x, y) of the sun.

• r is a positive number that specifies the radius of the sun.

• c1, c2, and c3 are rgb arrays that specify the three “ray colors.” In particular, c1 specifies the color
of Rays 1, 4, 7, 10, and 13. c2 specifies the color of Rays 2, 5, 8, 11, and 14. c3 specifies the color of
Rays 3, 6, 9, 12, and 15.

The implementation of DrawSun will require four calls to functions in simpleGraphics.py. You will need
three DrawStars (with suitable coloring and rotation) and a wrap-up DrawDisk.

3.3 The Nested Stars Design

The Application Script must also display a nesting like this:

Look carefully and you will see six stars in the design, each have the same center and the same ray colors.
The suns are nested, each one “just fitting” inside of the disk of its larger neighbor. To specify the rules for
the nesting we need to index the Suns from largest to smallest, say S1, S2, S3, S4 , S5, and S6. Here are the
rules:

The Radius Rule. The radius of Sk is α times the radius of Sk−1 where α = .62. E.g. if r is the radius of
S1, then the radius of S2 is .62r.

The Color Rule. The ray colors in Sk are the same as the ray colors in Sk−1 except they are shifted clockwise
one “notch.” In the displayed example, the color sequence for S1 (starting from the noon position) is

MOCMOCMOCMOCMOC

while for S2 it is

CMOCMOCMOCMOCMO

Here M = Magenta, O = orange, and C = cyan, and . Complete the Application Script so that it draws the
nesting with 6 suitable calls to DrawSun.

You are free to use either the built-in colors or you can “make up” your own rgb arrays. (If you Google
“rgb colors” you will discover that there are several websites that display tables of colors and their rgb
representation. So if you go this route, pick an interesting triplet of colors.)

To summarize, when we run Sun.py from the command shell, two figures should open up. In Figure 1
we should see a single sun. This will affirm that your implementation of DrawSun is correct. Figure 2 will
display the nested stars. If it is correct then you successfully used DrawSun. Submit your implementation of
Sun.py to CMS.

