
11/29/15

1

Binary Search

• Look for value v in sorted segment b[h..k]

?

h k

pre: b

< v

h i k

post: b

New statement of the
invariant guarantees
that we get leftmost
position of v if found

>= v

< v

h i j k

inv: b >= v?

3 3 3 3 3 4 4 6 7 7

0 1 2 3 4 5 6 7 8 9

Example b

h k
§ if v is 3, set i to 0
§ if v is 4, set i to 5
§ if v is 5, set i to 7
§ if v is 8, set i to 10

Binary Search

i = h; j = k+1;
while i != j:

New statement of the
invariant guarantees
that we get leftmost
position of v if found

Looking at b[i] gives linear search from left.
Looking at b[j-1] gives linear search from right.
Looking at middle: b[(i+j)/2] gives binary search.

?

h k

pre: b

< v

h i k

post: b >= v

< v

h i j k

inv: b >= v?

Flag of Mauritius

-1 -3 -7 -4 -2 -6 -5 1 0 2 4
h r=s i t k

< 0, o < 0, e ? ≥ 0, e

BUT NOT
ALWAYS!-1 -3 -7 -4 -2 -6 -5 1 0 2 4

h r=s i t k

Have to check if second swap is okay

Need two swaps
for two spaces

Sorting: Arranging in Ascending Order

?
0 n

pre: b sorted
0 n

post: b

sorted
0 i n

inv: b ?

2 4 4 6 6 7 5
0 i

2 4 4 5 6 6 7
0 i

Insertion Sort:

i = 0
while i < n:

Push b[i] down into its
sorted position in b[0..i]
i = i+1

Insertion Sort: Moving into Position
i = 0
while i < n:

push_down(b,i)
i = i+1

def push_down(b, i):
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

2 4 4 6 6 7 5
0 i

2 4 4 6 6 5 7
0 i

2 4 4 6 5 6 7
0 i

2 4 4 5 6 6 7
0 i

swap shown in the
lecture about lists

Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0..i-1]"""
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

• b[0..i-1]: i elements
• Worst case:

§ i = 0: 0 swaps
§ i = 1: 1 swap
§ i = 2: 2 swaps

• Pushdown is in a loop
§ Called for i in 0..n
§ i swaps each time

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2

Insertion sort is
an n2 algorithm

11/29/15

2

Algorithm “Complexity”
• Given: a list of length n and a problem to solve
• Complexity: rough number of steps to solve worst case
• Suppose we can compute 1000 operations a second:

Complexity n=10 n=100 n=1000
n 0.01 s 0.1 s 1 s

n log n 0.016 s 0.32 s 4.79 s
n2 0.1 s 10 s 16.7 m
n3 1 s 16.7 m 11.6 d
2n 1 s 4x1019 y 3x10290 y

Major Topic in 2110: Beyond scope of this course

Sorting: Changing the Invariant

?
0 n

pre: b sorted
0 n

post: b

sorted
0 i n

inv: b ?

Insertion Sort:

i = 0
while i < n:

j = index of min of b[i..n-1]
swap(b,i,j)
i = i+1

sorted, ≤ b[i. .]
0 i n

inv: b ≥ b[0..i-1]

Selection Sort:

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

First segment always
contains smaller values

Selection sort also
is an n2 algorithm

Partition Algorithm

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] and store in j to truthify post:

3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h i k

1 2 3 1 3 4 5 6 8b
h i k

or

• x is called the pivot value
§ x is not a program variable
§ denotes value initially in b[h]

x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

Sorting with Partitions

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] and store in j to truthify post:
x ?

h k
pre: b

h i i+1 k
post: b x >= x<= xy ?y >= y<= y

Partition Recursively Recursive partitions = sorting
§ Called QuickSort (why???)
§ Popular, fast sorting technique

QuickSort

def quick_sort(b, h, k):

"""Sort the array fragment b[h..k]"""

if b[h..k] has fewer than 2 elements:

return

j = partition(b, h, k)

b[h..j–1] <= b[j] <= b[j+1..k]

Sort b[h..j–1] and b[j+1..k]

quick_sort (b, h, j–1)

quick_sort (b, j+1, k)

• Worst Case:
array already sorted
§ Or almost sorted
§ n2 in that case

• Average Case:
array is scrambled
§ n log n in that case
§ Best sorting time!

x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

Final Word About Algorithms

• Algorithm:
§ Step-by-step way to do something
§ Not tied to specific language

• Implementation:
§ An algorithm in a specific language
§ Many times, not the “hard part”

• Higher Level Computer Science courses:
§ We teach advanced algorithms (pictures)
§ Implementation you learn on your own

List Diagrams

Demo Code

