Lecture 24

Designing Sequence
Algorithms

Announcements for This Lecture

Exams Assignment & Lab

e Unfortunately, too easy e A6 1s due on Thursday

e Mean: 83, Median: 87 = See consultants early!

e Lacked a good A question = Let us know about problems
* What do grades mean? e A’ 1s posted today

= A:90s * Piazza poll on due dates

* B:80s, mid 70s e Today’s lab is on invariants

= C:Below75 * Due after Thanksgiving
e Final will have to be harder = No official lab next week

= Not too hard, but 70 mean = But will be there on Tues

11/17/15 Sequence Algorithms

Horizontal Notation for Sequences

0 k len(b)
b <= sorted >=

Example of an assertion about an sequence b. It asserts that:

I. b[0.k-1]1s sorted (i.e.its values are in ascending order)

2. Everything in b[0..k—1]1s =< everything in b[k..len(b)—1]

0 h k

b

Given index h of the first element of a segment and h h+]

index k of the element that follows that segment,

the number of values in the segmentis k — h.

blh ..k — 1] has k — h elements in it. (h+1) -h=1

11/17/15 Sequence Algorithms

Developing Algorithms on Sequences

e Specify the algorithm by giving its precondition
and postcondition as pictures.

e Draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition

* The invariantis true at the beginning and at the end

e The four loop design questions (memorize them)

1.

11/17/15

How does loop start (how to make the invariant true)?

2. How does it stop (is the postcondition true)?
3.
4

. How does the body keep the invariant true?

How does the body make progress toward termination?

Sequence Algorithms

Generalizing Pre- and Postconditions

e Dutch national flag: tri-color

= Sequence of 0..n-1 of red, white, blue "pixels"

= Arrange to put reds first, then whites, then blues

0 n
pre: b ?

0 n
post: b | reds whites blues

0] k 1 n
inv: b | reds | whites blues

11/17/15

Sequence Algorithms

(values in 0..n-1 are unknown)

Make the red, , blue
sections initially empty:

* Range 1..1-1 has 0 elements
* Main reason for this trick

Changing loop variables turns
invariant into postcondition.

Generalizing Pre- and Postconditions

e Finding the minimum of a sequence.
0 n

pre: b ? and n>=0

(values in 0..n
are unknown)

post: b x 1s the min of this segment

e Put negative values before nonnegative ones.
0 n
pre: b ? and n>=0
0 k n
post: b <0 >=0

(values in 0..n
are unknown)

11/17/15 Sequence Algorithms

Generalizing Pre- and Postconditions

e Finding the minimum of a sequence.

0 n (values in 0
values muv..n
re: b ? =
p : and n>=0 are unknown)
0 n
post: b x 1s the min of this segment
0 j n o
. — : values 1n j..n
: ?
inv: b | x is min of this segment . are unknown)

e Put negative values before nonnegative ones.
0 n
pre: b ? and n>=0
0 k n
post: b <0 >=0

(values in 0..n
are unknown)

11/17/15 Sequence Algorithms

Generalizing Pre- and Postconditions

e Finding the minimum of a sequence.

0

pre: b ?
0

post: b x 1s the min of this segment
0]

inv: b | x is min of this segment ?

n

n

n

and n>=0

pre: j=0
post: j=n

(values in 0..n
are unknown)

(values inj..n
are unknown)

e Put negative values before nonnegative ones.

0

pre: b ?

post: b <0

11/17/15 Sequence Algorithms

n

n

and n>=0

(values in 0..n
are unknown)

Generalizing Pre- and Postconditions

e Finding the minimum of a sequence.

pre: b

post: b

nv: b

0
?
0
x 1s the min of this segment
0]
x 1s min of this segment ?

n
and n>=0
n

n pre: j=0
post: j=n

(values in 0..n
are unknown)

(values inj..n
are unknown)

e Put negative values before nonnegative ones.

pre: b

post: b

imnv: b

0
?
0 k
<0 >=(
0 k]
<0 ? >= ()

n
and n>=0
n

(values in 0..n
are unknown)

(values ink..j
are unknown)

Generalizing Pre- and Postconditions

e Finding the minimum of a sequence.

pre: b

post: b

nv: b

0
?
0
x 1s the min of this segment
0]

x 1s min of this segment

?

n
and n>=0
n

n pre: j=0
post: j=n

(values in 0..n
are unknown)

(values inj..n
are unknown)

e Put negative values before nonnegative ones.

pre: b

post: b

imnv: b

0
?
0 k
<0 >=(
0 k]
<0 ? >= ()

n
and n>=0
n

n pre: k=0,
j=n
post: k =]

(values in 0..n
are unknown)

(values ink..j
are unknown)

Partition Algorithm

e (Given a sequence b[h..k] with some value x 1n b[h]:

pre: b

h

k

X

?

e Swap elements of b[h..k] and store in j to truthify post:

post: b

change:

Into

11/17/15

h

1

1+1

k

<=X

X

>=X

h

k

b|354162381

h

k

bl121354638

* x 1s called the pivot value
" X 1S not a program variable

= denotes value initially in b[h]

Sequence Algorithms 11

Partition Algorithm

e (Given a sequence b[h..k] with some value x 1n b[h]:

pre: b

h

k

X

?

e Swap elements of b[h..k] and store in j to truthify post:

post: b

change:

Into

or

11/17/15

h

1

1+1

k

<=X

X

>=X

h

k

b|354162381

h 1

k

bl121354638

h 1

k

b|123134568

* x 1s called the pivot value
" X 1S not a program variable

= denotes value initially in b[h]

Sequence Algorithms 12

Partition Algorithm

e (Given a sequence b[h..k] with some value x 1n b[h]:

pre: b

e Swap elements of b[h..k] and store in j to truthify post:

post: b

11/17/15

h

k

X

?

h

i

1+1

k

<=X

X

>=X

Sequence Algorithms

13

Partition Algorithm

e (Given a sequence b[h..k] with some value x 1n b[h]:
h k

pre: b | x ?

e Swap elements of b[h..k] and store in j to truthify post:

h 1 1+1 k
post: b <=X X >=X

h 1] k
mmv: b <=X X ? >= X

* Agrees with precondition when1=h,j=k+1
e Agrees with postcondition when j =1+1

11/17/15 Sequence Algorithms

Partition Algorithm Implementation

def partition(b, h, k):

i=h;j=k+l; x=Dlh]

while i < j-1:

if b[i+1] >=x:
Move to end of block.
_swap(b,i+1,j-1)
J=Jj-1

else: #D[i+l] <x
_swap(b,i,i+1)
i=i+1

return i

11/17/15

"""Partition list b[h..k] around a pivot x = b[h]"""

invariant: b[h..I-1] <X, b[i] = x, b[j..k] >= x

-

\.

DN

partition(b,h k), not partition(b[h:k+1])
Remember, slicing always copies the list!

We want to partition the original list

/

post: b[h..i-1] < x, b[i] is X, and b[i+1..k] >=x

Sequence Algorithms 15

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""

i=h;j=k+l; x=Dlh]

<=X ? >= X
h 1+1] k
1 2 1 506 3 8

invariant: b[h..i-1] <X, b[i] =X, b[j..kK] >=x
while i < j-1:
if b[i+1] >=x:
Move to end of block.
_swap(b,i+1,j-1)
J=Jj-1
else: #D[i+l] <x
_swap(b,i,i+1)
i=i+1
post: b[h..i-1] < x, b[i] is X, and b[i+1..k] >=x
return i

11/17/15 Sequence Algorithms

16

Partition Algorithm Implementation

def partition(b, h, k): <=X|Xx ? >=X
"""Partition list b[h..k] around a pivot x = b[h]""" h 1 |1+1 j k
1=h;j=k+1;x=Dblh] 1 2(3|1 50|63 38
invariant: b[h..i-1] <X, b[i] =X, b[j..kK] >=x
while i < j-1: h 1 1+l] k
if bli+1] >= x: 1 2 1(3|50(6 3 8
Move to end of block. N7
_swap(b,i+1,j-1)
J=Jj-1
else: #D[i+l] <x
_swap(b,i,i+1)
i=i+1
post: b[h..i-1] < x, b[i] is X, and b[i+1..k] >=x
return i

11/17/15 Sequence Algorithms

Partition Algorithm Implementation

def partition(b, h, k): <= X ? >= X
"""Partition list b[h..k] around a pivot x = b[h]""" h i+1 j k
1= ;)= kel; x=Dlh] 1 2|3|1 50[6 38
invariant: b[h..i-1] <x, b[i] =X, b[j.k] >=x
while i < j-1: h 1 1+l] k

if b[i+1] >= x: 1 2 1(3|50/6 338
Move to end of block. N7
j_iv;apl(b,i+lj-l) h : i K
else: #b[i+l] <x I 2 310]5 638
_swap(b,i,i+1) L\
i=i+1

post: b[h..i-1] < x, b[i] is X, and b[i+1..k] >=x
return i

11/17/15 Sequence Algorithms

18

Partition Algorithm Implementation

def partition(b, h, k): <=X|Xx ? >=X
"""Partition list b[h..k] around a pivot x = b[h]""" h 1 |1+1 j k
1=h;j=k+1;x=Dblh] 1 2(3|1 50|63 38
invariant: b[h..i-1] <X, b[i] =X, b[j..kK] >=x
while i < j-1: h 1 1+l] k
if bli+1] >= x: 1 2 1(3|50(6 3 8
Move to end of block. N7
J._iv;.ra,pl(b,ﬁl,j-l) h ; i K
else: #D[i+l] <x 1 2 1]3]0]563 8
_swap(b,i,i+1) A
i=i+1 h 1] k
post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >=x 1 2101356 3%
return i KA

11/17/15 Sequence Algorithms

Dutch National Flag Variant

* Sequence of integer values
* ‘red’ =negatives, ‘white’ =0, ‘blues’ = positive
* Only rearrange part of the list, not all

h k
pre: b ?

h k
post: b <0 =0 >0

h t i] k
inv: b <0 7 1 =0 | >0

11/17/15 Sequence Algorithms

Dutch National Flag Variant

* Sequence of integer values
* ‘red’ =negatives, ‘white’ =0, ‘blues’ = positive
* Only rearrange part of the list, not all

h k
pre: b ?
h k
post: b <0 =0 >0 /pre: t=h, A
1=k+1,
h t 1] k j=k
mv: b <0 7 -0 | >0 Kpost: t=1

11/17/15 Sequence Algorithms

21

Dutch National Flag Algorithm

def dnf(b, h, k):
"""Returns: partition points as a tuple (i,j)"""
t=h;i=k+1,j=k;
inv: b[h..t-1] <O, b[t..i-1] 2, b[i..j1 = O, b[j+1..k] >0
while t < i:
if b[i-1] < O:
swap(b,i-1,t)
t=1t+1
elif b[i-1] == O:
i=1il
else:
swap(b,i-1,j)

i=il;j=jl1
post: b[h..i-1]1< 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/17/15 Sequence Algorithms

<0

h

-1

-2

3-10

22

Dutch National Flag Algorithm

def dnf(b, h, k):
"""Returns: partition points as a tuple (i,j)"""
t=h;i=k+1,j=k;
inv: b[h..t-1] <O, b[t..i-1] 2, b[i..j1 = O, b[j+1..k] >0
while t < i:
if b[i-1] < O:
swap(b,i-1,t)
t=1t+1
elif b[i-1] == O:
i=1il
else:
swap(b,i-1,j)
i=il;j=jl
post: b[h..i-1]1< 0, b[i..jl = 0, b[j+1..k] > 0
return (i, j)

11/17/15 Sequence Algorithms

<0 ? =0 | >0
h t 1] k
-1 -213-1 0|10 O 3
h t 1] k
-1 213 -110 0 O 3

Dutch National Flag Algorithm

def dnf(b, h, k):
"""Returns: partition points as a tuple (i,j)"""
t=h;i=k+1,j=k;
inv: b[h..t-1] <O, b[t..i-1] 2, b[i..j1 = O, b[j+1..k] >0
while t < i:
if b[i-1] < O:
swap(b,i-1,t)
t=1t+1
elif b[i-1] == O:
i=1il
else:
swap(b,i-1,j)
i=il;j=jl
post: b[h..i-1]1< 0, b[i..jl = 0, b[j+1..k] > 0
return (i, j)

11/17/15 Sequence Algorithms

<0 ? =0 | >0
h t 1] k
-1 -213-1 0|10 O 3
h t 1] k
-1 213 -110 0 O 3
h t 1] k
-1 -2 -113]0 0 O 3
LN/

24

Dutch National Flag Algorithm

def dnf(b, h, k):
"""Returns: partition points as a tuple (i,j)"""
t=h;i=k+1,j=k;
inv: b[h..t-1] <O, b[t..i-1] 2, b[i..j1 = O, b[j+1..k] >0
while t < i:
if b[i-1] < O:
swap(b,i-1,t)
t=1t+1
elif b[i-1] == O:
i=1il
else:
swap(b,i-1,j)
i=il;j=jl
post: b[h..i-1]1< 0, b[i..jl = 0, b[j+1..k] > 0
return (i, j)

11/17/15 Sequence Algorithms

<0 ? =0 | >0

h t 1]

-1 -2{3-1 0({0 06 3

h t 1] k

-1 2|3 -110 0 0|6 3

h t 1] k

-1 -2 -1{3{0 0 0|6 3

A

h t] k

-1 -2 -1]0 0 0|3 6 3
~__ 7

25

Will Finish This Next Week

11/17/15

Sequence Algorithms

26

