
11/17/15

1

Horizontal Notation for Sequences

Example of an assertion about an sequence b. It asserts that:
1. b[0..k–1] is sorted (i.e. its values are in ascending order)
2. Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]

Given index h of the first element of a segment and
index k of the element that follows that segment,
the number of values in the segment is k – h.

b[h .. k – 1] has k – h elements in it.

b
0 h k

h h+1

(h+1) – h = 1

b <= sorted >=
0 k len(b)

Developing Algorithms on Sequences

• Specify the algorithm by giving its precondition
and postcondition as pictures.

• Draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition
§ The invariant is true at the beginning and at the end

• The four loop design questions (memorize them)
1. How does loop start (how to make the invariant true)?
2. How does it stop (is the postcondition true)?
3. How does the body make progress toward termination?
4. How does the body keep the invariant true?

Generalizing Pre- and Postconditions

• Dutch national flag: tri-color
§ Sequence of 0..n-1 of red, white, blue "pixels"
§ Arrange to put reds first, then whites, then blues

?
0 n

pre: b

reds whites blues
0 n

post: b

(values in 0..n-1 are unknown)

inv: b reds whites ? blues
0 j k l n

Make the red, white, blue
sections initially empty:
• Range i. . i-1 has 0 elements
• Main reason for this trick
Changing loop variables turns
invariant into postcondition.

Generalizing Pre- and Postconditions
• Finding the minimum of a sequence.

• Put negative values before nonnegative ones.

? and n >= 0
0 n

pre: b

x is the min of this segment
0 n

post: b

x is min of this segment
0 j n

inv: b ?

(values in 0..n
are unknown)

(values in j. .n
are unknown)

? and n >= 0
0 n

pre: b

< 0
0 k n

post: b

(values in 0..n
are unknown)

(values in k..j
are unknown)

>= 0
0 k j n

inv: b ? >= 0< 0

pre: j = 0
post: j = n

pre: k = 0,
j = n

post: k = j

Partition Algorithm

• Given a sequence b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] and store in j to truthify post:

3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h i k

1 2 3 1 3 4 5 6 8b
h i k

or

• x is called the pivot value
§ x is not a program variable
§ denotes value initially in b[h]

x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

Partition Algorithm

• Given a sequence b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] and store in j to truthify post:
x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

<= x x ? >= x
h i j k

inv: b

• Agrees with precondition when i = h, j = k+1
• Agrees with postcondition when j = i+1

11/17/15

2

Partition Algorithm Implementation
def partition(b, h, k):

"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
_swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
_swap(b,i,i+1)
i= i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

partition(b,h,k), not partition(b[h:k+1])
Remember, slicing always copies the list!

We want to partition the original list

Partition Algorithm Implementation
def partition(b, h, k):

"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
_swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
_swap(b,i,i+1)
i= i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

Partition Algorithm Implementation
def partition(b, h, k):

"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
_swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
_swap(b,i,i+1)
i= i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

1 2 1 3 0 5 6 3 8
h i j k

1 2 1 0 3 5 6 3 8
h i j k

Dutch National Flag Variant

• Sequence of integer values
§ ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive
§ Only rearrange part of the list, not all

?
h k

pre: b

< 0 = 0 > 0
h k

post: b

inv: b < 0 ? = 0 > 0
h t i j k

pre: t = h,
i = k+1,
j = k

post: t = i

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i= i-1

else:
swap(b,i-1,j)
i= i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i= i-1

else:
swap(b,i-1,j)
i= i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

-1 -2 3 -1 0 0 0 6 3
h t i j k

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

-1 -2 -1 3 0 0 0 6 3
h t i j k

-1 -2 -1 0 0 0 3 6 3
h t j k

