Lecture 23

Loop Invariants



Announcements for This Lecture

Assignments Prelim 2
e A6 due in one week e Tonight, 7:30-9pm
= Dataset should be done = A-J (Urs GO1)
= Geton track this weekend = K-Z (Statler Aud)
= Next Week: ClusterGroup = SDS received e-mail
e A7 will be last assignment e Make-up is Monday
= Will vote on the due date = Only if submitted conflict
= Posted before Thanksgiving = Also received e-mail
e There i1s lab next week  Graded by the weekend
= No lab week of Turkey Day = Returned early next week

11/12/15 Loop Invariants



Recall: Important Terminology

assertion: true-false statement placed in a program to
assert that it 1s true at that point

= (Can either be a comment, or an assert command

invariant: assertion supposed to "always" be true

* [If temporarily invalidated, must make it true again
= Example: class invariants and class methods

loop invariant: assertion supposed to be true before
and after each iteration of the loop

iteration of a loop: one execution of its body

11/12/15 Loop Invariants



Assertions versus Asserts

e Assertions prevent bugs # x 1s the sum of 1..n
= Help you keep track of
what you are doing Comment form
The root of the assertion.
* Also track down bugs| of ail bugs!

= Make it easier to check

belief/code mismatches X! n| |1

e The assert statement 1S N N
a (type of) assertion

* One you are enforcing 1 9 o

= Cannot always convert a
comment to an assert

11/12/15 Loop Invariants



Preconditions & Postconditions

i
precondition 12345678
J/ T
#x =sumof 1.n-1 X contains the sum of these (6)
X=X+n
n=n+1l
# x= sum of 1..n\-1 n
™ " 12345678
postcondition
|
e Precondition: assertion x contains the sum of these (10)
placed before a segment Relationship Between Two
e Postcondition: assertion If precondition is true, then
placed after a segment postcondition will be true

11/12/15 Loop Invariants



Solving a Problem

precondition
J/
#x ~sumof L.n What statement do you
n=n+1 put here to make the
#x= sumof L0 postcondition true?

\

postcondition

A:x=Xx + 1
B:x=Xx +n

C:x= X + n+l

D: None of the above
E: I don’t know

11/12/15 Loop Invariants




Solving a Problem

precondition
J/
#x ~sumof L.n What statement do you
n=n+1 put here to make the
_ ostcondition true?
# x= sum of 1..11\ P
\ o o
postcondition
A:x=x + 1
B:x=X +n j
C-x = | Remember the new value of n
X=X + n+ éj

D: None of the above
E: I don’t know

11/12/15 Loop Invariants




Invariants: Assertions That Do Not Change

* Loop Invariant: an assertion that is true before and
after each iteration (execution of repetend)

x=0;1=23 -
o . 1=
while i <= b;
X=X+1i*i <
= i+] # invariant

# x = sum of squares of 2..5
true
@ X=X+ 1%1
Invariant:
false ‘l’

1=1+1 pP——

X = sum of squares of 2..1-1

in terms of the range of integers

11/12/15 Loop Invariants 8



Invariants: Assertions That Do Not Change

x=0;i=2 x |0
# Inv: x = sum of squares of 2..i-1 - [9
while i <= 5:

X=X+1i*i

=i+l I=2
# Post: x = sum of squares of 2..5 <€

# invariant

Integers that have
been processed:

true
Range 2..1-1: X=X+ 1%
false ‘l‘

=i+l —

11/12/15 Loop Invariants The loop processes the range 2..5 9



Invariants: Assertions That Do Not Change

x=0;i=2 x |0
# Inv: x = sum of squares of 2..i-1 ,

o ! i X2
while i <= 5:

X=Xx+1i*i

i=i+1 1=2
# Post: x = sum of squares of 2..5 <€

# invariant
Integers that have

been processed:

true
Range 2..1-1: 2..1 (empty) X =X+ 1%
false ‘l‘

=i+l —

11/12/15 Loop Invariants The loop processes the range 2..5 10



Invariants: Assertions That Do Not Change

x=0;1=2 x (M 4
# Inv: x = sum of squares of 2..i-1 ,

o : i (XX 3
while i <= 5:

X=Xx+1i*i

i=i+1 1=2
# Post: x = sum of squares of 2..5 <€

# invariant
Integers that have

been processed: 2

true
Range 2..1-1: 2.2 X=X+ 1%
false ‘l‘

=i+l —

11/12/15 Loop Invariants The loop processes the range 2..5 11



Invariants: Assertions That Do Not Change

x=0;i=2 x M X 13
# Inv: x = sum of squares of 2..i-1 ,
i XX X 4

while i <= 5:
X=X+1i*i
i=1+1 1=2
# Post: x = sum of squares of 2..5 <€
# invariant
Integers that have

been processed: 2, 3

true
Range 2..1-1: 2.3 X=X+ 1%
false ‘l‘

=i+l —

11/12/15 Loop Invariants The loop processes the range 2..5 12



Invariants: Assertions That Do Not Change

x=0;i=2 x KX KB 29

# Inv: x = sum of squares of 2..i-1 ,
i XX X X 5

while i <= 5:
X=X+1i*i
i=1+1 1=2
# Post: x = sum of squares of 2..5 <€
# invariant
Integers that have

been processed: 2, 3, 4

true
Range 2..1-1: 2.4 X=X+ 1%
false ‘l‘

=i+l —

11/12/15 Loop Invariants The loop processes the range 2..5 13



Invariants: Assertions That Do Not Change

x=0;1=2 x NX B B 54

# Inv: x = sum of squares of 2..i-1 ,
i XXX X X 6

while i <= 5:
X=X+1i*i
i=1+1 1=2
# Post: x = sum of squares of 2..5 <€
# invariant
Integers that have

been processed: 2, 3, 4, 5

true
Range 2..1-1: 2.5 X=X+ 1%
false ‘l‘

=i+l —

11/12/15 Loop Invariants The loop processes the range 2..5 14



Invariants: Assertions That Do Not Change

x=0;1=2 x NX B B 54

#I.nv..x:sumofsqua,resof2..1l i XXX X X 6
while i <= 5:
X=X+1i*i
i=1+1 1=2
(

# Post: x = sum of squares of 2..5
# invariant

Integers that have
been processed: 2, 3, 4, 5

true
Range 2..1-1: 2.5 X=X+ 1%
false ‘l‘

1=1+1 pP——

Invariant was always true just
before test of loop condition. So
it’s true when loop terminates

The loop processes the range 2..5 15




Designing Integer while-loops

# Process integers in a..b

# inv: integers in a..k-1 have been processed

k=a

while k <=b:

process integer k
k=k+1

# post: integers in a..b have been processed

invariant
\ 4 @ true | Pprocess k

11/12/15

1nit

Command to do something

Equivalent postcondition

Invariant

false

Loop Invariants

k=k +1;

16



Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

AN L A W N =

Implement the repetend (process k)

11/12/15 Loop Invariants

17



Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

Implement the repetend (process k)

# O v oA W

Process b..c

# Postcondition: range b..c has been processed

11/12/15 Loop Invariants

18



Designing Integer while-loops

I. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition

3. Write the basic part of the while-loop

4. Write loop invariant

5. Figure out any initialization

6. Implement the repetend (process k)

# Process b..c

while k <=¢:

k=k+1
# Postcondition: range b..c has been processed

11/12/15 Loop Invariants

19



Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

Implement the repetend (process k)

# O v oA W

Process b..c

# Invariant: range b..k-1 has been processed
while k <=c:

k=k+1
# Postcondition: range b..c has been processed

11/12/15 Loop Invariants

20



Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition
Write the basic part of the while-loop

Write loop invariant

hn B~ W N =

Figure out any initialization

6. Implement the repetend (process k)

# Process b..c
Initialize variables (if necessary) to make invariant true

# Invariant: range b..k-1 has been processed
while k <=c¢:

# Process k

k=k+1
# Postcondition: range b..c has been processed

11/12/15 Loop Invariants

21



Finding an Invariant

Command to do something

7
# Make b True if n is prime, False otherwise

# b is Trueif no int in 2..n-1 divides n, False otherwise

——— Equivalent postcondition
What 1s the invariant?

11/12/15 Loop Invariants 22



Finding an Invariant
Command to do something

7
# Make b True if n is prime, False otherwise

while k <n:
# Process k;

k=k +1
# b is Trueif no int in 2..n-1 divides n, False otherwise

——— Equivalent postcondition
What 1s the invariant?

11/12/15 Loop Invariants 23



Finding an Invariant

Command to do something

7
# Make b True if n is prime, False otherwise

# invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:
# Process k;

k=k +1
# b is Trueif no int in 2..n-1 divides n, False otherwise

~— Equivalent postcondition
What 1s the invariant? 123 ...k1kk+l...n

11/12/15 Loop Invariants 24




Finding an Invariant
Command to do something

7
# Make b True if n is prime, False otherwise

b = True

k=2

# invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k <n:

# Process k;

k=k +1
# b is Trueif no int in 2..n-1 divides n, False otherwise

——— Equivalent postcondition
What 1s the invariant? 123 ...k1kk+l...n

11/12/15 Loop Invariants 25




Finding an Invariant

Command to do something

7
# Make b True if n is prime, False otherwise

b = True
k=2
# invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:
# Process k;
if n % k ==0:
b = False
k=k+1
# b is Trueif no int in 2..n-1 divides n, False otherwise

——— Equivalent postcondition
What 1s the invariant? 123 ...k1kk+l...n

11/12/15 Loop Invariants 26




Finding an Invariant

# set x to # adjacent equal pairs in s Command to do something

for s = 'ebeee’, x =2
while k < len(s):
# Process k

k=k+1
# x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

k: next integer to process.
Which have been processed?

A: 0.k
B: 1.k
C:0.k-1
D:1.k-1
E: I don’t know 21




Finding an Invariant

# set x to # adjacent equal pairs in s Command to do something

for s = 'ebeee’, x =2

while k < len(s):
# Process k

k=k+1

# x = # adjacent equal pairs in s[0.len(s)-1] Equivalent postcondition

k: next integer to process.

Which have been processed? What is the invariant?

A: 0.k A: X =no. adj. equal pairs in s[1..k]
B: 1.k B: x = no. adj. equal pairs in s[0..k]
C:10..k-1 C: x = no. adj. equal pairs in s[1..k—1]
D: 1.k-1 D: x = no. adj. equal pairs in s[0..k—1]
E: I don’t know E: I don’t know




Finding an Invariant

# set x to # adjacent equal pairs in 8 Command to do something

for s = 'ebeee’, x =2
# inv: X = # adjacent equal pairs in s[0.k-1]

while k < len(s):
# Process k

k=k+1

# x = # adjacent equal pairs in s[0.len(s)-1] Equivalent postcondition

k: next integer to process.

Which have been processed? What is the invariant?

A: 0.k A: X =no. adj. equal pairs in s[1..k]

B: 1.k B: x =no. adj. equal pairs in s[0. k]
C:]0..k-1 C: X =no. ad;j. equal pairs in s[1..k—1]
D: 1.k-1 D:|x = no. adj. equal pairs in s[0..k-1] |
E: I don’t know E: I don’t know




Finding an Invariant

# set x to # adjacent equal pairs in s Command to do something
x=0
for s = 'ebeee’, x =2
# inv: X = # adjacent equal pairs in s[0.k-1]
while k < len(s):
# Process k

k=k+1

# x = # adjacent equal pairs in s[0.len(s)-1] Equivalent postcondition

k: next integer to process.
What is initialization for k?

A: k=0
B: k=1
C:k=-1

D: I don’t know

30



Finding an Invariant

# set x to # adjacent equal pairs in s Command to do something
x=0
k=1
# inv: X = # adjacent equal pairs in s[0.k-1]
while k < len(s):

# Process k

for s = 'ebeee’, x =2

k=k+1

# x = # adjacent equal pairs in s[0.len(s)-1] Equivalent postcondition

k: next integer to process.

What is initialization for k? Which do we compare to “process” k?
A: k=0 A: s[k] and s[k+1]
BI B: s[k-1] and s[k]
C:k=-1 C: s[k-1] and s[k+1]
D: Idon’t know D: s[k] and s[n]
E: I don’t know




Finding an Invariant

# set x to # adjacent equal pairs in 8 Command to do something
x=0
k=1
# inv: X = # adjacent equal pairs in s[0.k-1]
while k < len(s):
# Process k
x =x + 1 if (s[k-1] == g[Kk]) else O
k=k+1
# x = # adjacent equal pairs in s[0..len(s)-1]

for s = 'ebeee’, x =2

Equivalent postcondition

k: next integer to process.

What is initialization for k? Which do we compare to “process” k?
A: k=0 A: s[k] and s[k+1]
BI B:ls[k—l] and s[k] |
C:k=-1 C: s[k-1] and s[k+1]
D: I don’t know D: s[k] and s[n]
E: I don’t know




Reason carefully about initialization

# s is a string; len(s) >=1 1. Whatis the invariant?
# Set ¢ to largest element in s

c =77 Command to do something
k=99
# inv:
while k < len(s):
# Process k
k=k+1
# ¢ =largest char in s[0..len(s)—1]

Equivalent postcondition

11/12/15 Loop Invariants 33



Reason carefully about initialization

# s is a string; len(s) >=1 1. Whatis the invariant?
# Set ¢ to largest element in s

c =77 Command to do something
k= %9
# inv: cislargestelementin s[0..k—1]
while k < len(s):

# Process k

k =k+1
# ¢ =largest char in s[0..len(s)—1]

Equivalent postcondition

11/12/15 Loop Invariants 34



Reason carefully about initialization

# s is a string; len(s) >=1 1. Whatis the invariant?

# Set ¢ to largest element in s

: 2. How do we initialize ¢ and k?
c=%? Command to do something

k=97

A: k=0; ¢=s[0]

# inv: cislargestelementin s[0..k—1]
while k < len(s): B: k=1; ¢=s[0]
# Process k C: k=1; ¢=9[l]

k=k+1
D: k=0; ¢=¢[1]
# ¢ =largest char in s[0..len(s)—1]

Equivalent postcondition E: None of the above

11/12/15 Loop Invariants 35



Reason carefully about initialization

# s is a string; len(s) >=1 1. What is the invariant?

# Set ¢ to largest element in s o
_ : 2. How do we initialize ¢ and k?
c=?9 Command to do something

k=797

A: k=0; ¢=s[0]
# inv: cislargestelementin s[0..k—1]
while k < len(s): B:[ k=1 c¢c= S[O]]
# Process k C: k=1; ¢=9[l]

k=k+1
D: k=0; ¢=¢[1]
# ¢ =largest char in s[0..len(s)—1]

Equivalent postcondition E: None of the above

An empty set of characters or integers has no maximum. Therefore,
be sure that 0..k—1 1s not empty. You must start with k = 1.

11/12/15 Loop Invariants 36



