
While Loops

Lecture 22

Announcements for This Lecture

Assignments Prelim 2

• Thursday, 7:30-9pm
§ A–J (Uris G01)
§ K–Z (Statler Aud)
§ SDS received e-mail

• Make-up still up in air
§ Only if submitted conflict
§ Will receive e-mail from us

• Graded by the weekend
§ Returned early next week

11/10/15 2While-Loops

• A5 is now graded
§ Will be returned in lab
§ Mean: 51 Median: 53
§ Std Dev: 5.4
§ Passing Grade: 30

• A6 due next Thursday
§ Dataset should be done
§ Cluster hopefully started
§ Delay all else to weekend

Recall: For Loops

Print contents of seq
x = seq[0]
print x
x = seq[1]
print x
…
x = seq[len(seq)-1]
print x

The for-loop:

for x in seq:
print x

• Key Concepts
§ loop sequence: seq
§ loop variable: x
§ body: print x
§ Also called repetend

11/10/15 While-Loops 3

for-loops: Beyond Sequences

• Work on iterable objects
§ Object with an ordered

collection of data
§ This includes sequences
§ But also much more

• Examples:
§ Text Files (built-in)
§ Web pages (urllib2)

• 2110: learn to design
custom iterable objects

def blanklines(fname):
"""Return: # blank lines in file fname
Precondition: fname is a string"""
open makes a file object
file = open('myfile.txt')

Accumulator
count = 0
for line in file: # line is a string

if len(line) == 0: # line is blank
count = count+1

f.close() # close file when done
return count

11/10/15 While-Loops 4

Important Concept in CS:
Doing Things Repeatedly

1. Process each item in a sequence
§ Compute aggregate statistics for a dataset,

such as the mean, median, standard deviation, etc.
§ Send everyone in a Facebook group an appointment time

2. Perform n trials or get n samples.
§ A4: draw a triangle six times to make a hexagon
§ Run a protein-folding simulation for 106 time steps

3. Do something an unknown
number of times
§ CUAUV team, vehicle keeps

moving until reached its goal
11/10/15 While-Loops 5

for x in sequence:
process x

for x in range(n):
do next thing

????

Beyond Sequences: The while-loop

while <condition>:
statement 1
…
statement n

• Relationship to for-loop
§ Broader notion of

“still stuff to do”
§ Must explicitly ensure

condition becomes false
§ You explicitly manage

what changes per iteration

11/10/15 While-Loops 6

condition
true

false

repetend

repetend or body

While-Loops and Flow

print 'Before while'
count = 0
i = 0
while i < 3:

print 'Start loop '+str(i)
count = count + i
i = i + 1
print 'End loop '

print 'After while'

Output:
Before while
Start loop 0
End loop
Start loop 1
End loop
Start loop 2
End loop
After while

11/10/15 While-Loops 7

while Versus for

process range b..c-1
for k in range(b,c)

process k

process range b..c-1
k = b
while k < c:

process k
k = k+1Must remember to increment

process range b..c
for k in range(b,c+1)

process k

process range b..c
k = b
while k <= c:

process k
k = k+1

11/10/15 While-Loops 8

Range Notation

• m..n is a range containing n+1-m values
§ 2..5 contains 2, 3, 4, 5. Contains 5+1 – 2 = 4 values
§ 2..4 contains 2, 3, 4. Contains 4+1 – 2 = 3 values
§ 2..3 contains 2, 3. Contains 3+1 – 2 = 2 values
§ 2..2 contains 2. Contains 2+1 – 2 = 1 values
§ 2..1 contains ???

11/10/15 While-Loops 9

A: nothing
B: 2,1
C: 1
D: 2
E: something else

What does 2..1 contain?

Range Notation

• m..n is a range containing n+1-m values
§ 2..5 contains 2, 3, 4, 5. Contains 5+1 – 2 = 4 values
§ 2..4 contains 2, 3, 4. Contains 4+1 – 2 = 3 values
§ 2..3 contains 2, 3. Contains 3+1 – 2 = 2 values
§ 2..2 contains 2. Contains 2+1 – 2 = 1 values
§ 2..1 contains ???

• The notation m..n, always implies that m <= n+1
§ So you can assume that even if we do not say it

§ If m = n+1, the range has 0 values

11/10/15 While-Loops 10

while Versus for

incr seq elements
for k in range(len(seq)):

seq[k] = seq[k]+1

incr seq elements
k = 0
while k < len(seq):

seq[k] = seq[k]+1
k = k+1

11/10/15 While-Loops 11

while is more flexible, but
requires more code to use

Makes a second list.

Patterns for Processing Integers
range a..b-1

i = a
while i < b:

process integer i
i = i + 1

store in count # of '/'s in String s
count = 0
i = 0
while i < len(s):

if s[i] == '/':
count= count + 1

i= i +1
count is # of '/'s in s[0..s.length()-1]

range c..d
i= c
while i <= d:

process integer i
i= i + 1

Store in double var. v the sum
1/1 + 1/2 + …+ 1/n
v = 0; # call this 1/0 for today
i = 1
while i <= n:

v = v + 1.0 / i
i= i +1

v= 1/1 + 1/2 + …+ 1/n
11/10/15 While-Loops 12

while Versus for

table of squares to N
seq = []
n = floor(sqrt(N)) + 1
for k in range(n):

seq.append(k*k)

table of squares to N
seq = []
k = 0
while k*k < N:

seq.append(k*k)
k = k+1

A for-loop requires that
you know where to stop
the loop ahead of time

A while loop can use
complex expressions to
check if the loop is done

11/10/15 While-Loops 13

while Versus for

Table of n Fibonacci nums
fib = [1, 1]
for k in range(2,n):

fib.append(fib[-1] + fib[-2])

Table of n Fibonacci nums
fib = [1, 1]
while len(fib) < n:

fib.append(fib[-1] + fib[-2])

Sometimes you do not use
the loop variable at all

Do not need to have a loop
variable if you don’t need one

Fibonacci numbers:
F0 = 1
F1 = 1
Fn = Fn–1 + Fn–2

11/10/15 While-Loops 14

Cases to Use while

Remove all 3's from list t
i = 0
while i < len(t):

no 3’s in t[0..i–1]
if t[i] == 3:

del t[i]
else:

i = i+1

Remove all 3's from list t
while 3 in t:

t.remove(3)

11/10/15 While-Loops 15

Great for when you must modify the loop variable

Cases to Use while

Remove all 3's from list t
i = 0
while i < len(t):

no 3’s in t[0..i–1]
if t[i] == 3:

del t[i]
else:

i += 1

Remove all 3's from list t
while 3 in t:

t.remove(3)

11/10/15 While-Loops 16

Great for when you must modify the loop variable

Stopping
point keeps
changing.

The stopping condition is not
a numerical counter this time.

Simplifies code a lot.

Cases to Use while

• Want square root of c
§ Make poly f(x) = x2-c
§ Want root of the poly

(x such that f(x) is 0)
• Use Newton’s Method

§ x0 = GUESS (c/2??)
§ xn+1 = xn – f(xn)/f'(xn)

= xn – (xnxn-c)/(2xn)
= xn – xn/2 + c/2xn

= xn/2 + c/2xn

§ Stop when xn good enough

def sqrt(c):
"""Return: square root of c
Uses Newton’s method
Pre: c >= 0 (int or float)"""
x = c/2
Check for convergence
while abs(x*x – c) > 1e-6:

Get xn+1 from xn
x = x / 2 + c / (2*x)

return x

11/10/15 While-Loops 17

Cases to Use while

• Want square root of c
§ Make poly f(x) = x2-c
§ Want root of the poly

(x such that f(x) is 0)
• Use Newton’s Method

§ x0 = GUESS (c/2??)
§ xn+1 = xn – f(xn)/f'(xn)

= xn – (xnxn-c)/(2xn)
= xn – xn/2 + c/2xn

= xn/2 + c/2xn

§ Stop when xn good enough

def sqrt(c):
"""Return: square root of c
Uses Newton’s method
Pre: c >= 0 (int or float)"""
x = c/2
Check for convergence
while abs(x*x – c) > 1e-6:

Get xn+1 from xn
x = x / 2 + c / (2*x)

return x

11/10/15 While-Loops 18

Recall Lab 9
Welcome to CS 1110 Blackjack.
Rules: Face cards are 10 points. Aces are 11 points.

All other cards are at face value.

Your hand:
2 of Spades
10 of Clubs

Dealer's hand:
5 of Clubs

Type h for new card, s to stop:
11/10/15 While-Loops 19

Play until player
stops or busts

Recall Lab 9
Welcome to CS 1110 Blackjack.
Rules: Face cards are 10 points. Aces are 11 points.

All other cards are at face value.

Your hand:
2 of Spades
10 of Clubs

Dealer's hand:
5 of Clubs

Type h for new card, s to stop:
11/10/15 While-Loops 20

Play until player
stops or busts

How do we design a complex
while-loop like this one?

Some Important Terminology

• assertion: true-false statement placed in a program to
assert that it is true at that point
§ Can either be a comment, or an assert command

• invariant: assertion supposed to "always" be true
§ If temporarily invalidated, must make it true again
§ Example: class invariants and class methods

• loop invariant: assertion supposed to be true before
and after each iteration of the loop

• iteration of a loop: one execution of its body
11/10/15 While-Loops 21

Assertions versus Asserts

• Assertions prevent bugs
§ Help you keep track of

what you are doing
• Also track down bugs

§ Make it easier to check
belief/code mismatches

• The assert statement is
a (type of) assertion
§ One you are enforcing
§ Cannot always convert a

comment to an assert

x is the sum of 1..n

x ? n 3

x ? n 0

x ? n 1

Comment form
of the assertion.

11/10/15 While-Loops 22

The root
of all bugs!

Preconditions & Postconditions

• Precondition: assertion
placed before a segment

• Postcondition: assertion
placed after a segment

x = sum of 1..n-1
x = x + n
n = n + 1
x = sum of 1..n-1

precondition

postcondition

1 2 3 4 5 6 7 8

x contains the sum of these (6)

n

n
1 2 3 4 5 6 7 8

x contains the sum of these (10)

Relationship Between Two
If precondition is true, then
postcondition will be true

11/10/15 While-Loops 23

Preconditions & Postconditions

• Precondition: assertion
placed before a segment

• Postcondition: assertion
placed after a segment

x = sum of 1..n-1
x = x + n
n = n + 1
x = sum of 1..n-1

precondition

postcondition

1 2 3 4 5 6 7 8

x contains the sum of these (6)

n

n
1 2 3 4 5 6 7 8

x contains the sum of these (10)

Relationship Between Two
If precondition is true, then
postcondition will be true

11/10/15 While-Loops 24

