

Note on Ranges

- m..n is a range containing $n+1-m$ values
- $2 . .5$ contains $2,3,4,5$. Contains $5+1-2=4$ values
- 2..4 contains $2,3,4$. Contains $4+1-2=3$ values
- $2 . .3$ contains 2,3 . Contains $3+1-2=2$ values
- $2 . .2$ contains 2 . Contains $2+1-2=1$ values
- $2 . .1$ contains ???
- The notation $\mathrm{m} . \mathrm{n}$, alway implies that $\mathrm{m}<=\mathrm{n}+1$
- So you can assume that even if we do not say it
- If $m=n+1$, the range has 0 values

Patterns for Processing Integers	
range a..b-1	range c..d
$\mathrm{i}=\mathrm{a}$	$\mathrm{i}=\mathrm{c}$
while 8 b :	while i $<$ d:
process integer I i $=\mathrm{i}+1$	process integer I
$1=1+1$	$1 \mathrm{l}=1+1$
\# store in count \# of '/'s in String s	\# Store in double var. v the sum
count $=0$	\# $1 / 11+1 / 2+\ldots+1 / n$
$\mathrm{i}=0$	$\mathrm{v}=0$; \# call this $1 / 0$ for today
while i < len(s):	$\mathrm{i}=0$
if $\operatorname{si]}==$ '/':	while i < n :
\| count= count +1	$\mathrm{v}=\mathrm{v}+1.0 / \mathrm{i}$
i= i+1	i= i+1
\# count is \# of $1 /$'s in s [0. s.ength $(-1]$	\# $\mathrm{V}=1 / 1 \mathrm{l}+1 / 2+\ldots+1 / \mathrm{n}$

while Versus for	
```# table of squares to N seq = [] n = floor(sqrt(N)) + l for k in range(n): seq.append(k*k)```	```# table of squares to N seq = [] k=0 while k* k<N: seq.append(k*k) k = k+l```
A for-loop requires that you know where to stop the loop ahead of time	A while loop can use complex expressions to check if the loop is done


while Versus for	
Fibonacci numbers:$\begin{aligned} & F_{0}=1 \\ & F_{1}=1 \\ & F_{n}=F_{n-1}+F_{n-2} \end{aligned}$	
\# Table of n Fibonacci nums $\mathrm{fib}=[1,1]$   for $k$ in range( $2, n$ ):   fib.append(fib[-1] + fib[-2])	```# Table of n Fibonacci nums fib = [l, l] while len(fib) < n: fib.append(fib[-1]+ fib[-2])```
Sometimes you do not use the loop variable at all	$\begin{gathered} \text { Do not need to have a loop } \\ \text { variable if you don't need one } \end{gathered}$


Cases to Use while	
- Want square root of $c$   - Make poly $f(x)=x^{2}-c$   - Want root of the poly ( $x$ such that $f(x)$ is 0 )   - Use Newton's Method   - $x_{0}=$ GUESS ( $c / 2 ? ?$ )   - $x_{n+1}=x_{n}-f\left(x_{n}\right) f f^{\prime}\left(x_{n}\right)$ $=x_{n}-\left(x_{n} x_{n}-c\right) /\left(2 x_{n}\right)$ $=x_{n}-x_{n} / 2+c / 2 x_{n}$ $=x_{n} / 2+c / 2 x_{n}$   - Stop when $x_{n}$ good enough	def sqrt(c):   """Return: square root of c   Uses Newton's method   Pre: c >= 0 (int or float)" ""'   $\mathrm{x}=\mathrm{c} / \mathrm{L}$   \# Check for convergence   while $\operatorname{abs}\left(x^{*} x-c\right)>1 e-6$ :   \# Get $x_{n+1}$ from $x_{n}$ $x=x / 2+c /(2 * x)$   return x

## Some Important Terminology

- assertion: true-false statement placed in a program to assert that it is true at that point
- Can either be a comment, or an assert command
- invariant: assertion supposed to "always" be true
- If temporarily invalidated, must make it true again
- Example: class invariants and class methods
- loop invariant: assertion supposed to be true before and after each iteration of the loop
- iteration of a loop: oneex ecution of its body


## Cases to Use while

Great for when you must modify the loop variable
\# Remove all 3's from list t \# Remove all 3's from list t
$\mathrm{i}=0 \quad$ while 3 in t :
while i < len( t ):
| t.remove(3)
\# no 3's in t[0...i-1]
if $t[i]==3$ :
del t[i] Stopping
The stopping condition is not a numerical counter this time.
else: point keeps
Simplifies code a lot.
| i $+=1$
changing.


Preconditions \& Postconditions


