Lecture 21

Programming
with Subclasses

Announcements for Today

Reading Assignments

e Today: See reading online e A4 has now been graded
e Tuesday: Chapter 7 = People generally liked it
e Prelim, Nov 12t 7:30-9:00 * Avg Time: 8 hrs

= Material up to Today = STDev: 4 hrS, Max: 25 hrs

= Review has been posted = Mean: 86, Median: 90

= Recursion + Loops + Classes = As 90+, Bs 75+, Cs 40+
* S/U Students are exempt e A5 is due tonight at midnight

Conflict with Prelim time?

e Start working on A6
= LAST DAY TO SUBMIT

* Finish Dataset by Sunday

11/5/15 Programming with Subclasses 2

Recall: Overloading Multiplication

class Fraction(object): >>>p = Fraction(1,2)

"""Tnstance attributes:
>>> (= Fraction(3,4
numerator [int]: top ! (3,4)

denominator [int > 0]: bottom """ >>>T=Dp*q
def __mul (self,q): Python
"""Returns: Product of self, q converts to
Makes a new Fraction; does not

modify contents of self or q

>>> P =
Precondition: q a Fraction"" r p'—mul—(CD

assert type(q) == Fraction
top = self.numerator*q.numerator Operator overloading uses
bot = self.denominator*q.denominator method 1in object on left.

return Fraction(top,bot)

11/5/15 Programming with Subclasses

Recall: Overloading Multiplication

class Fraction(object): >>>p = Fraction(1,2)

"""Tnstance attributes: :
, >>>q =2 # anint
numerator [int]: top

denominator [int > 0]: bottom """ >>>T=Dp*q
def __mul (self,q): Python
"""Returns: Product of self, q converts to
Makes a new Fraction; does not

modify contents of self or q

>>>p=p.__mul_ (q) # ERROR

Precondition: g a Fraction""
l assert type(q) == Fraction l

top = self.numerator®q.numerator Can only multiply fractions.

bot = self.denominator*q.denominator But ints “make sense’ too.

return Fraction(top,bot)

11/5/15 Programming with Subclasses

Dispatch on Type

e Types determine behavior class Fraction(object):

= Diff types = diff behavior def mul (selfq):

" Example: + (plus) """Returns: Product of self, q
e Addition for numbers Precondition: q a Fraction or int"""
e Concatenation for strings if type(q) == Fraction:

return self._mulFrac(q)
elif type(q) == int:
= Main method checks type return self._mullnt(q)

e Can implement with ifs

= “Dispatches” to right helper
def _mullnt(self,q): # Hidden method

return Fraction(self.numerator*q,
= Checks (class) type on left self.denominator)

= Dispatches to that method

 How all operators work

11/5/15 Programming with Subclasses

Dispatch on Type

e Types determine behavior class Fraction(object):

= Diff types = diff behavior def mul (selfq):

" Example: + (plus) """Returns: Product of self, q
° Addltlon for numbers / M%

* Concatenation for strings Classes are main way to handle

e Can implement with ifs “dispatch on type” in Python.

= Main method checks type Other languages have other

= “Dispatches” to right helper

ways to support this (e.g. Java)

 How all operators work

)

= Checks (class) type on left self. denominator)
= Dispatches to that method

11/5/15 Programming with Subclasses 6

Another Problem: Subclasses

class Fraction(object): >>>p = Fraction(1,2)

"""Instances are normal fractions n/d , .
>>> (0 = #
Instance attributes: ! Blna,ry FP&Cthn(l,Z) 1/4

numerator [int]: top >>>p=Dp*q
denominator [int > 0]: bottom """

Python
class BinaryFraction(Fraction): converts to
"""Instances are fractions k/2" v

Instance attributes are same, BUT:
>>>p=p.__mul_ (q) # ERROR

numerator [int]: top
denominator [= 2%, n = O]: bottom """
def __init__(selfk,n): __mul__ has precondition
"""Make fraction k/&» """ type(q) == Fraction

assert type(n) ==int andn >=0
Fraction.__init_ (k.2 ** n)

11/5/15 Programming with Subclasses 7

The isinstance Function

 isinstance(<obj><class>)

" True if <obj>’s class is same €| id4
as or a subclass of <class>
= False otherwise id4
« Example: Executive
= jsinstance(e,Executive) is True name | ‘Fred
= jsinstance(e,Employee) is True
(¢, Employee) start | 2012
= jgsinstance(e,object) is True
. . 0.0
= iginstance(e,str) is False salary
* Generally preferable to type bonus | 0.0

= Works with base types too!

11/5/15 Programming with Subclasses

isinstance and Subclasses

>>> ¢ = Employee('Bob',2011)

>>> iginstance(e,Executive) ° | idS
299

id5
Employee
A: True
B . False name 'Bob'
D: I don,t knOW salary 50k

11/5/15 Programming with Subclasses

isinstance and Subclasses

>>> ¢ = Employee('Bob',2011) object
>>> jsinstance(e,Executive) T
P99
Employee
A: True T
B: False Correct Executive
C: Error
D: I don’t know — means “extends”’

or “1s an instance of”’

11/5/15 Programming with Subclasses

10

Fixing Multiplication

class Fraction(object): >>>p = Fraction(1,2)

""Tnstance attributes: . .
>>> (0 = #
numerator [imt]: top q = BinaryFraction(1,2) # 1/4

denominator [int > 0]: bottom""" >>>T=Dp*q
def __mul (self,q): Python
"""Returns: Product of self, q converts to
Makes a new Fraction; does not

modify contents of self or q
Precondition: g a Fraction™"

l assert isinstance(q, Fraction) l
top = self.numerator*q.numerator Can multiply SO long as it

bot = self.denominator*q.denominator has numerator, denominator
return Fraction(top,bot)

>>>p=p._ mul_ (q # OKAY

11/5/15 Programming with Subclasses 11

Error Types in Python

def foo(): def foo():
assert 1 == 3, 'My error' x=56/0
>>> f00() >>> f00()

[AssertionErrorWeroDivisionError: |1’nteger
division or modulo by zero

Class Names

11/5/15 Programming with Subclasses

12

Error Types in Python

def foo(): .)
Information about an error
assert 1 ==&, My error' is stored inside an object.
The error type is the class
of the error object.
U J y,
>>> f00() >>> f00()

[AssertionErrorWeroDivisionError: |1’nteger
division or modulo by zero

Class Names

11/5/15 Programming with Subclasses

13

Error Types in Python

e All errors are instances of class BaseException

e This allows us to organize them in a hierarchy

BaseException

I

Exception

StandardError

T

AssertionError

Programming with Subclasses

id4

AssertionError

'My error’

— means “‘extends”
or “i1s an instance of”’

14

Error Types in Python

e All errors are instances of class BaseException

e This allows us to organize them in a hierarchy

BaseException

A

All of these are
actually empty!
Why?

Standa,'rdError

T

AssertionError

)

Programming with Subclasses

id4

AssertionError

'My error’

— means “‘extends”
or “i1s an instance of”’

15

Python Error Type Hierarchy

Exception

T

SystemEXxit StandardError

Argument has Argument has
wrong type wrong value
(e.g. float([1])) (e.g. float('a’))

“\—

AssertionError || AttributeError || ArithmeticError || IOError || TypeError || ValueError

X

ZeroDivisionError

OverflowError

http://docs.python.org/
library/exceptions.html

[Why so many error types? J

11/5/15 Programming with Subclasses 16

Recall: Recovering from Errors

* try-except blocks allow us to recover from errors

= Do the code that is in the try-block

= Once an error occurs, jump to the catch
 Example:

try:

might have an error

input = raw_input() # get number from user /

x = float(input) # convert string to float

print 'The next number is +str(x+1)
except:

print 'Hey! That is not & number!' <€— XU i have an error

11/5/15 Programming with Subclasses 17

Errors and Dispatch on Type

* try-except blocks can be restricted to specific errors
* Doe except if error is an instance of that type

= [f error not an instance, do not recover

 Example:
try: May have IOError

input = raw_input() # get number from user/
x = float(input) # convert string to float«

———

print 'The next number is +str(x+1) May have ValueError
except ValueError: Only recovers ValueError.
print 'Hey! That is not a number|' «— Other errors ignored.

11/5/15 Programming with Subclasses 18

Errors and Dispatch on Type

* try-except blocks can be restricted to specific errors
* Doe except if error is an instance of that type

= [f error not an instance, do not recover

 Example:
try: May have IOError

input = raw_input() # get number from user/
x = float(input) # convert string to float«

———

print 'The next number is +str(x+1) May have ValueError
except I0Error: Only recovers IOError.
print 'Check your keyboard!' < — Other errors ignored.

11/5/15 Programming with Subclasses 19

Creating Errors in Python

* (Create errors with raise def foo(x):

" Usage: raise <exp> assert x < 2, 'My error'
= exp evaluates to an object \
= An 1nstance of Exception Identlcal]

e Tailor vour error types
Y P def f00(x): /
= ValueError: Bad value
if x >=2:

m = 'My error'
raise AssertionError(m)

* TypeError: Bad type

e Still prefer asserts for
preconditions, however

= Compact and easy to read

11/5/15 Programming with Subclasses 20

Raising and Try-Except

def foo(): e The value of foo()?
x=0
try: A: 0
raise StandardError() B:2
X = 2 C:3
D: No value. It stops!
except StandardError: E- T don’t know
X=3

return x

11/5/15 Programming with Subclasses 21

Raising and Try-Except

def foo(): e The value of foo()?
x=0
try: A: 0
raise StandardError() B:2
x =2 C:3 Correct
D: No value. It stops!
except StandardError: E- T don’t know
X=3

return x

11/5/15 Programming with Subclasses 22

Raising and Try-Except

def foo(): The value of foo()?
x=0
try: A: 0
raise StandardError() B:2
_ C:3
X =2
. D: No value. It stops!
except Exception: E: T don’t know
X=3

return x

11/5/15 Programming with Subclasses 23

Raising and Try-Except

def foo(): The value of foo()?
x=0
try: A: 0
raise StandardError() B:2
x =9 C:3 Correct
. D: No value. It stops!
except Exception: E: T don’t know
X=3

return x

11/5/15 Programming with Subclasses 24

Raising and Try-Except

def foo(): The value of foo()?
x=0
try: A: 0
raise StandardError() B:2
x =2 C:3
, D: No value. It stops!
except AssertionError: E- T don’t know
X=3

return x

11/5/15 Programming with Subclasses 25

Raising and Try-Except

def 100(): » The value of foo()?

x=0
try: A: 0

raise StandardError() B:2

= C:3
X =2
. D: No value. Correct

except Assertionkrror: E- T don’t know

XxX=39

return x -
Python uses isinstance
to match Error types

11/5/15 Programming with Subclasses 26

Creating Your Own Exceptions

class CustomError(StandardError):

"""An instance is a custom exception"" \
pass Only 1ssues is choice of

parent Exception class.
This is all you need Use StandardError 1f
: you are unsure what.
= No extra fields
) \. /

= No extra methods

= No constructors

Inherit everything

11/5/15 Programming with Subclasses 27

Errors and Dispatch on Type

* try-except can put the error in a variable
 Example:

try:
input = raw_input() # get number from user
x = float(input) # convert string to float
print 'The next number is +str(x+1)

except ValueError as e: /(Some Error subclasses
print e.message have more attributes

print 'Hey! That is not a number!'

11/5/15 Programming with Subclasses 28

Typing Philosophy in Python

e Duck Typing: class Fraction(object):

= “Type” object 1s determined

= Not the same as type() value

"""Instance attributes:

) . numerator [int]: to
by its methods and properties [, ! 4
denominator [int > 0]: bottom"""

= Preferred by Python experts def _eq (self,q):

e Implement with hasattr()
= hasattr(<object>,<string>)

"""Returns: True if self, q equal,
False if not, or q not a Fraction""

if type(q) != Fraction:

= Returns true if object has an ‘ return False
attribute/method of that name left = self. numerator*q.denominator
e This has many problems rght = self.denominator*q.numerator

* The name tells you nothing

11/5/15

return left == rght

about its specification

Programming with Subclasses

29

Typing Philosophy in Python

e Duck Typing: class Fraction(object):

= “Type” object 1s determined

= Not the same as type() value

"""Instance attributes:

) . numerator [int]: to
by its methods and properties . [, ! P
denominator [int > 0]: bottom"""

= Preferred by Python experts def _eq (self,q):

e Implement with hasattr()
= hasattr(<object>,<string>)

"""Returns: True if self, q equal,
False if not, or q not a Fraction""

if (not (hasattr(q, numerator") and

= Returns true if object has an hasattr(q, denomenator")):
attribute/method of that name | return False
e This has many problems left = self.numerator*q.denominator

* The name tells you nothing

11/5/15

rght = self.denominator*q.numerator
return left == rght

about its specification

Programming with Subclasses

30

Typing Philosophy in Python

e Duck Typing: class Fraction(object):

« >y 1 - : . """Instance attributes:
Type” object 1s determined

by its methods and properties

N?,_QMM_L‘_AQ_“AL_._

P1 Compares anything with fef __eq (self,q):

numerator [int]: top

denominator [int > O]: bottom"""

e Impl numerator & denominator | """Returns: True if self, q equal,

False if not, or q not a Fraction""
N if (not (hasattr(q,numerator') and

Returns true if object has a N hasattr(q, denomenator")):
attribute/method of that name TS_ return False
e This has many problems left = self.numerator*q.denominator

11/5/15

rght = self.denominator*q.numerator

The name tells you nothing return left == rght

about its specification

Programming with Subclasses

31

Typing Philosophy in Python

e Duck Typing: class Fraction(object):

“ » Tl . N | """Instan rf ;
= “Type f _a_umﬁ_m.z\()p
by its Y How to properly implement/use typing

] .) : Ottom"""
= Not thel 1s a major debate in language design
= Preferr¢ ® What we really care about is
e Implemen specifications (and invariants) Pqual,
Ction"""

= hasattr{ ® Types are a “shorthand” for this erator') and

" Returny Different typing styles trade ease-of-use fomenator’)):

attribut{ with overall program robustness/safety
* This has n&j_r_,_v ,«t/enominator

rght = self.denominator*q.numerator
return left == rght

* The name tells you nothing
about its specification

11/5/15 Programming with Subclasses 32

Typing Philosophy in Python

* Duck Typing: class Employee(object):
= “Type” object 1s determined """An Employee with a salary""
by its methods and properties
= Not the same as type() value def __eq__ (self,other):
= Preferred by Python experts if (not (hasattr(other, name") and
o Implement with hasattr() hasattr(other,'start') and

hasattr(other,'salary’))

= hasattr(<object>,<string>)
‘ return False

= Returns true if object has an

) return (self.name == other.name and
attribute/method of that name (

self.start == other.start and

e This has many problems self.salary == other.salary)

* The name tells you nothing
about its specification

11/5/15 Programming with Subclasses 33

