Lecture 20

Subclasses &
Inheritance

Announcements for Today

Reading Assignments

e Today: Chapter 18 * A4 graded by end of week

* Online reading for Thursday = Survey is still open

« Prelim,Nov 12" 7:30-9:00 | ° /> Was posted Friday
» Material up to Thursday = Shorter written assignment
= Review posted on Thursday * Due Thursday at Midnight
= Recursion + Loops + Classes e A6 also posted Friday

e S/U Students are exempt = Due a week after prelim

e Conflict with Prelim time? = Designed to take two weeks
" Prelim 2 Contlict on CMS = Finish first part before exam
= Submit by Thursday

11/3/15 Subclasses & Inheritance 2

An Application

* (Goal: Presentation program (e.g. PowerPoint)
* Problem: There are many types of content

= Examples: text box, rectangle, 1mage, etc.
= Have to write code to display each one
* Solution: Use object oriented features

= Define class for every type of content
= Make sure each has a draw method:

for x in slide[i].contents:
\ x.draw(window)

11/3/15 Subclasses & Inheritance

Sharing Work

e These classes will have a lot in common

= Drawing handles for selection
= Background and foreground color
= Current size and position

* And more (see the formatting bar in PowerPoint)

* Result: A lot of repetitive code

e Solution: Create one class with shared code

= All content are subclasses of the parent class

11/3/15 Subclasses & Inheritance

L Abbreviate Defining a Subclass
as SC to right

. _ Superclass
class SlideContent(object): Parent class SlideContent
"""Any object on a slide.""" Base class
def _ init_ (self, X, y, w, h): ...
def draw_frame(self): ... Subclass
def select(self): ... Child class TextBox Image
Derived class

class TextBox(SlideContent):
"""An object containing text."""
def _ init_ (self, x, y, text): ...
def draw(self): ...

class Image(SlideContent):
IIIIIIAn ima’ge.llllll
def _ init_ (self, x, y, image_file): ...
def draw(self): ...

11/3/15 Subclasses & Inheritance

Class Definition: Revisited

class <name>(<superclass>):

Class specification Class type to extend

getters and setters (may need module name)

initializer (__init)

e Every class must
extend something

 Previous classes all

9 extended object y

definition of operators

definition of methods

anything else

11/3/15 Subclasses & Inheritance

object and the Subclass Hierarcy

e Subclassing creates a Kivy Example

hierarchy of classes

= Each class has its own object

super class or parent kivy.uix.widge.WidgetBase

= Until object at the “top”
. Kivy.uix.widget.Widget
* object has many features
= Special built-in fields: kivy.uix.label.Label

_class__,_dict__ kivy.uix.buttonjButton
= Default operators:
str__,__repr__ Module Class

11/3/15 Subclasses & Inheritance

object and the Subclass Hierarcy

* Subclassing creates a ; ple
hierarchy of classes built-in class
= Each class has its own object %

super class or parent kivy.uix.widge.Wid{ Super super class]
= Until object at the “top”

. Kivy.uix.widget.Widget
* object has many features

= Special built-in fields: Kivy.ulx label.Label — ' = | s

_class__,_ diet__ kivy.uix.button[Button] g

= Default operators:
str__,__repr__ Module Class

11/3/15 Subclasses & Inheritance 8

Name Resolution Revisited

e To look up attribute/method name
I. Look first in instance (object folder)
2. Then look in the class (folder)

e Subclasses add two more rules:

3. Look in the superclass

4. Repeat 3. until reach object

id3

TextBox

p | id3

> text| Hil

11/3/15 Subclasses & Inheritance

Name Resolution Revisited

e To look up attribute/method name

I. Look first in instance (object folder)

2. Then look in the class (folder)

* Subclasses add two more rules:

3. Look in the superclass

4. Repeat 3. until reach object

p | id3

11/3/15

id3

text

p.text

TextBox

‘ p.select() \

| p.draw() \

'Hi!'

Subclasses & Inheritance

10

Name Resolution Revisited

e To look up attribute/method name

I. Look first in instance (object folder)

TextBox

p | id3

> text| Hil

11/3/15 Subclasses & Inheritance 11

A Simpler Example

class Employee(object):
"""Tnstance is salaried worker
INSTANCE ATTRIBUTES:
name [string]: full name
start [int = -1, -1 if unknown]:
first year hired

salary [float]: yearly wage""

class Executive(Employee):
"""An Employee with a bonus

INSTANCE ATTRIBUTES:
bonus [float]: annual bonus""

11/3/15 Subclasses & Inheritance

12

A Simpler Example

class Employee(object):
"""Tnstance is salaried worker
INSTANCE ATTRIBUTES:

name [string]: full name

All double
underscore
methods are

in class object

start [int = -1, -1 if unknown]:
first year hired

salary [float]: yearly wage""

class Executive(Employee):
"""An Employee with a bonus

INSTANCE ATTRIBUTES:
bonus [float]: annual bonus""

11/3/15 Subclasses & Inheritance 13

Method Overriding

e Which str do we use?

= Start at bottom class folder
= Find first method with name
= Use that definition

e New method definitions
override those of parent

e Also applies to
= Initializers)
= Operators > all “methods”

= Properties _/

11/3/15 Subclasses & Inheritance

14

Accessing the “Previous’ Method

* What if you want to use the
original version method?
= New method = original+more

* Do not want to repeat code
from the original version

e (Call old method explicitly

= Use method as a function
= Pass object as first argument

 Example:
Employee.__ str__ (self)

e Cannot do with properties

11/3/15 Subclasses & Inheritance

15

Accessing the “Previous’ Method

* What if you want to use the
original version method?
* New method = original+more

= Do not want to repeat code
from the original version

e (Call old method explicitly
= Use method as a function
= Pass object as first argument
 Example:

Employee.__ str__ (self)

e Cannot do with properties

11/3/15

class Employee(object):
"""An Employee with a salary""

def _ str_ (self):

return (self.name +
', year ' + str(self.start) +
' salary ' + str(self.salary))

class Executive(Employee):
"""An Employee with a bonus."""

def __ str_ (self):
return (Employee._ str__ (self)

+ ' bonus ' + str(self.bonus))

Subclasses & Inheritance 16

Primary Application: Initializers

class Employee(object):

def _ init_ (self,n,d,s=50000.0):
self._name=n

self._start =d

self._salary = s

class Executive(Employee):

def __init_ (self,n,d,b=0.0):
Employee.__init_ (self,n,d)

self. bonus =D

11/3/15 Subclasses & Inheritance

Instance Attributes are (Often) Inherited

class Employee(object): 44
def _ init_ (self,n,d,s=50000.0):
self._name =n name
self._start =d
start
self._salary = s
salary
class Executive(Employee): p—
def __init_ (self,n,d,b=0.0):
Employee._ init_ (self,n,d)
self._bonus =b

11/3/15

Subclasses & Inheritance

Executive
Tred’ Created in
Employee
2012 initializer
50000.0
0.0
Created in
Executive
initializer

18

Also Works With Class Attributes

Class Attribute: Assigned outside of any method definition

class Employee(object):
""Instance is salaried worker™"

Class Attribute
STD_SALARY = 50000.0
class Executive(Employee): 50000.0
""An Employee with a bonus.""”
Class Attribute

STD_BONTUS = 10000.0
10000.0

11/3/15 Subclasses & Inheritance

19

Name Resolution and Inheritance

class A(object):
x = 8 # Class Attribute
y = 8 # Class Attribute

def f(self):
| return self.§0)

def g(self):
| return 10

class B(A):
y=4 # Class Attribute
z =42 # Class Attribute

def g(self):
| return 14

def h(self):
| return 18

11/3/15

* Execute the following:

>>> g, = A()
>>>) = B()

e What 1s value of a.f()?

A: 10

B: 14

C:5

D: ERROR

E: I don’t know

Subclasses & Inheritance

20

Name Resolution and Inheritance

class A(object):
x = 8 # Class Attribute
y = 8 # Class Attribute

def f(self):
| return self.§0)

def g(self):
| return 10

class B(A):
y=4 # Class Attribute
z =42 # Class Attribute

def g(self):
| return 14

def h(self):
| return 18

11/3/15

* Execute the following:

>>> g, = A()
>>>) = B()

e What 1s value of a.f()?

A: 10 CORRECT
B: 14

C:5

D: ERROR

E: I don’t know

Subclasses & Inheritance

21

Name Resolution and Inheritance

class A(object):
x = 8 # Class Attribute
y = 8 # Class Attribute

def f(self):
| return self.§0)

def g(self):
| return 10

class B(A):
y=4 # Class Attribute
z =42 # Class Attribute

def g(self):
| return 14

def h(self):
| return 18

11/3/15

* Execute the following:

>>> g, = A()
>>>) = B()

e What 1s value of b.f()?

A: 10

B: 14

C:5

D: ERROR

E: I don’t know

Subclasses & Inheritance

22

Name Resolution and Inheritance

class A(object):
x = 8 # Class Attribute
y = 8 # Class Attribute

def f(self):
| return self.§0)

def g(self):
| return 10

class B(A):
y=4 # Class Attribute
z =42 # Class Attribute

def g(self):
| return 14

def h(self):
| return 18

11/3/15

* Execute the following:

>>> g, = A()
>>>) = B()

e What 1s value of b.f()?

A: 10

B: 14 CORRECT
C:5

D: ERROR

E: I don’t know

Subclasses & Inheritance

23

Name Resolution and Inheritance

class A(object):
x = 8 # Class Attribute
y = 8 # Class Attribute

def f(self):
| return self.§0)

def g(self):
| return 10

class B(A):
y=4 # Class Attribute
z =42 # Class Attribute

def g(self):
| return 14

def h(self):
| return 18

11/3/15

* Execute the following:

>>> g, = A()
>>>) = B()

e What 1s value of h.x?

A: 4

B:3

C: 42

D: ERROR

E: I don’t know

Subclasses & Inheritance

24

Name Resolution and Inheritance

class A(object):
x = 8 # Class Attribute
y = 8 # Class Attribute

def f(self):
| return self.§0)

def g(self):
| return 10

class B(A):
y=4 # Class Attribute
z =42 # Class Attribute

def g(self):
| return 14

def h(self):
| return 18

11/3/15

* Execute the following:

>>> g = A()
>>> 1) = B()
e What 1s value of h.x?
A: 4
B:3 CORRECT
C:42
D: ERROR
E: I don’t know

Subclasses & Inheritance

25

Name Resolution and Inheritance

class A(object):
x = 8 # Class Attribute
y = 8 # Class Attribute

def f(self):
| return self.§0)

def g(self):
| return 10

class B(A):
y=4 # Class Attribute
z =42 # Class Attribute

def g(self):
| return 14

def h(self):
| return 18

11/3/15

* Execute the following:

>>> g, = A()
>>>) = B()

e What 1s value of a.2?

A: 4

B:3

C: 42

D: ERROR

E: I don’t know

Subclasses & Inheritance

26

Name Resolution and Inheritance

class A(object):
x = 8 # Class Attribute
y = 8 # Class Attribute

def f(self):
| return self.§0)

def g(self):
| return 10

class B(A):
y=4 # Class Attribute
z =42 # Class Attribute

def g(self):
| return 14

def h(self):
| return 18

11/3/15

* Execute the following:

>>> g, = A()
>>>) = B()
e What 1s value of a.z?
A: 4
B:3
C: 42

D: ERROR CORRECT
E: I don’t know

Subclasses & Inheritance 27

Properties and Inheritance

* Properties: all or nothing s Employee(object)

= Typically inherited

@property
= Or fully overridden def salary(self):
(both getter and setter) | return self._salary
@salary.setter

* When override property,

. def salary(self,value):
completely replace it

| self._salary = value

= Cannot use super()

. class Executive(Employee):
e Very rarely overridden

" Exception: making a @property # no setter; now read-only

property read-only def salary(self):
| return self._salary

= See employeel.py

11/3/15 Subclasses & Inheritance 28

