
Using Classes Effectively

Lecture 19

Announcements

Reading

• Tuesday: Chapter 18
• Thursday reading online

• A4 due tonight at Midnight
§ 10 pts per day late
§ Consultants available tonight

• A5 & A6 posted tomorrow
§ See included micro-deadlines

Regrades

• Today is last day to request
§ Show it to me after class
§ I will verify if it is valid

• Then request regrade in CMS

10/29/15 Using Classes Effectively 2

• Prelim, Nov 12th 7:30-9:00
§ Material up to November 5
§ Recursion + Loops + Classes

• S/U Students are exempt
• Conflict with Prelim time?

§ Prelim 2 Conflict on CMS

Assignments

• Type: set of values and the operations on them
§ int: (set: integers; ops: +, –, *, /, …)
§ Time (set: times of day; ops: time span, before/after, …)
§ Worker (set: all possible workers; ops: hire,pay,promote,…)
§ Rectangle (set: all axis-aligned rectangles in 2D;

ops: contains, intersect, …)

• To define a class, think of a real type you want to make
§ Python gives you the tools, but does not do it for you
§ Physically, any object can take on any value
§ Discipline is required to get what you want

Designing Types From first
day of class!

10/29/15 Using Classes Effectively 3

Making a Class into a Type

1. Think about what values you want in the set
§ What are the attributes? What values can they have?

2. Think about what operations you want
§ This often influences the previous question

• To make (1) precise: write a class invariant
§ Statement we promise to keep true after every method call

• To make (2) precise: write method specifications
§ Statement of what method does/what it expects (preconditions)

• Write your code to make these statements true!

10/29/15 Using Classes Effectively 4

Planning out a Class
class Time(object):

"""Instances represent times of day.
Instance Attributes:

hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]"""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59"""

def isPM(self):
"""Returns: this time is noon or later."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Time instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

5

Planning out a Class
class Rectangle(object):

"""Instances represent rectangular
regions of the plane.
Instance Attributes:

t: y coordinate of top edge [float]
l: x coordinate of left edge [float]
b: y coordinate of bottom edge [float]
r: x coordinate of right edge [float]

For all Rectangles, l <= r and b <= t."""

def __init__(self, t, l, b, r):
"""The rectangle [l, r] x [t, b]
Pre: args are floats; l <= r; b <= t"""

def area(self):
"""Return: area of the rectangle."""

def intersection(self, other):
"""Return: new Rectangle describing

intersection of self with other."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

6

Planning out a Class
class Hand(object):

"""Instances represent a hand in cards.
Instance Attributes:

cards: cards in the hand [list of card]
This list is sorted according to the
ordering defined by the Card class."""

def __init__(self, deck, n):
"""Draw a hand of n cards.
Pre: deck is a list of >= n cards"""

def isFullHouse(self):
"""Return: True if this hand is a full
house; False otherwise"""

def discard(self, k):
"""Discard the k-th card."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

10/29/15 Using Classes Effectively 7

Implementing a Class

• All that remains is to fill in the methods. (All?!)
• When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled
4. Ensure class invariant is true when done

• Later, when using the class:
§ When calling methods, ensure preconditions are true
§ If attributes are altered, ensure class invariant is true

10/29/15 Using Classes Effectively 8

Implementing an Initializer

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

You put code here

This is true to start

This should be true
at the end

self.hour = hour
self.min = min

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

10/29/15 Using Classes Effectively 9

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

Implementing a Method

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

This should be true
at the end

self.min = self.min + mins
self.hour = self.hour + hours

This is true to start
What we are supposed
to accomplish

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

10

?

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

Implementing a Method

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

This should be true
at the end

self.min = self.min + mins
self.hour = (self.hour + hours +

self.min / 60)
self.min = self.min % 60
self.hour = self.hour % 24

This is true to start
What we are supposed
to accomplish

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

11

Role of Invariants and Preconditions

• They both serve two purposes
§ Help you think through your

plans in a disciplined way
§ Communicate to the user* how

they are allowed to use the class

• Provide the interface of the class
§ interface btw two programmers
§ interface btw parts of an app

• Important concept for making
large software systems
§ Will return to this idea later

* …who might well be you!

in•ter•face |ˈintərˌfās| noun

1. a point where two systems, subjects,
organizations, etc., meet and interact :
the interface between accountancy and
the law.

• chiefly Physics a surface forming a
common boundary between two
portions of matter or space, e.g.,
between two immiscible liquids : the
surface tension of a liquid at its
air/liquid interface.

2. Computing a device or program
enabling a user to communicate with a
computer.

• a device or program for connecting
two items of hardware or software so
that they can be operated jointly or
communicate with each other.

—The Oxford American Dictionary

Implementing a Class

• All that remains is to fill in the methods. (All?!)
• When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled
4. Ensure class invariant is true when done

• Later, when using the class:
§ When calling methods, ensure preconditions are true
§ If attributes are altered, ensure class invariant is true

Easy(ish) if we are the user.
But what if we aren’t?

10/29/15 Using Classes Effectively 13

Recall: Enforce Preconditions with assert

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: n an int, 0 < n < 1,000,000"""
assert type(n) == int, str(n)+' is not an int'
assert 0 < n and n < 1000000, str(n)+' is out of range'
Implement method here…

Check (part of)
the precondition

(Optional) Error message
when precondition violated

10/29/15 Using Classes Effectively 14

Enforce Method Preconditions with assert
class Time(object):

"""Instances represent times of day."""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""
assert type(hour) == int
assert 0 <= hour and hour < 24
assert type(min) == int
assert 0 <= min and min < 60

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59""”
assert type(hour) == int
assert type (min) == int
assert hour >= 0 and
assert 0 <= min and min < 60

Instance Attributes:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

Initializer creates/initializes all
of the instance attributes.
Asserts in initializer guarantee the
initial values satisfy the invariant.

Asserts in other methods enforce
the method preconditions.

15

Hiding Methods From Access

• Put underscore in front of a
method will make it hidden
§ Will not show up in help()
§ But it is still there…

• Hidden methods
§ Can be used as helpers

inside of the same class
§ But it is bad style to use

them outside of this class
• Can do same for attributes

§ Underscore makes it hidden
§ Do not use outside of class

class Fraction(object):
"""Instance attributes:

numerator: top [int]
denominator: bottom [int > 0]"""

def _is_denominator(self,d):
"""Return: True if d valid denom"""
return type(d) == int and d > 0

def __init__(self,n=0,d=1):
assert self._is_denominator(d)
self.numerator = n
self.denominator = d

10/29/15 Using Classes Effectively 16

Helper
method

HIDDEN

Enforcing Invariants

class Fraction(object):
"""Instance attributes:

numerator: top [int]
denominator: bottom [int > 0]

"""

• These are just comments!
>>> p = Fraction(1,2)
>>> p.numerator = 'Hello'

• How do we prevent this?

• Idea: Restrict direct access
§ Only access via methods
§ Use asserts to enforce them

• Examples:
def getNumerator(self):

"""Returns: numerator"""
return self.numerator

def setNumerator(self,value):
"""Sets numerator to value"""
assert type(value) == int
self.numerator = value

Invariants:
Properties that
are always true.

10/29/15 Using Classes Effectively 17

Data Encapsulation

• Idea: Force the user to only use methods
• Do not allow direct access of attributes

Setter Method
• Used to change an attribute
• Replaces all assignment

statements to the attribute
• Bad:

>>> f.numerator = 5
• Good:

>>> f.setNumerator(5)

Getter Method
• Used to access an attribute
• Replaces all usage of

attribute in an expression
• Bad:

>>> x = 3*f.numerator
• Good:

>>> x = 3*f.getNumerator()
10/29/15 Using Classes Effectively 18

Data Encapsulation
class Fraction(object):

"""Instance attributes:
_numerator: top [int]
_denominator: bottom [int > 0]"""

def getDenomenator(self):
"""Returns: numerator attribute"""
return self._denomenator

def setDenomenator(self, d):
"""Alters denomenator to be d
Pre: d is an int > 0"""
assert type(d) == int
assert 0 < d
self._denominator = d

Getter

Setter

Precondition is same
as attribute invariant.

Naming Convention
The underscore means
“should not access the

attribute directly.”

Do this for all of
your attributes

10/29/15 Using Classes Effectively 19

Mutable vs. Immutable Attributes

Mutable

• Can change value directly
§ If class invariant met
§ Example: t.color

• Has both getters and setters
§ Setters allow you to change
§ Enforce invariants w/ asserts

Immutable

• Can’t change value directly
§ May change “behind scenes”
§ Example: t.x

• Has only a getter
§ No setter means no change
§ Getter allows limited access

10/29/15 Using Classes Effectively 20

May ask you to differetiate on the exam

Structure of a Proper Python Class
class Fraction(object):

"""Instances represent a Fraction
Attributes:

_numerator: [int]
_denominator: [int > 0]"""

def getNumerator(self):
"""Returns: Numerator of Fraction"""

…
def __init__(self,n=0,d=1):

"""Initializer: makes a Fraction"""
…
def __add__(self,q):

"""Returns: Sum of self, q"""
…
def normalize(self):

"""Puts Fraction in reduced form"""
…

Docstring describing class
Attributes are all hidden

Getters and Setters.

Initializer for the class.
Defaults for parameters.

Python operator overloading

Normal method definitions

10/29/15 Using Classes Effectively 21

Exercise: Design a (2D) Circle

• What are the attributes?
§What is the bare minimum we need?
§What are some extras we might want?
§What are the invariants?

• What are the methods?
§With just the one circle?
§With more than one circle?

10/29/15 Using Classes Effectively 22

Advanced Topic Warning!

The following will not be on the exam

If you ask “Will this be on the Exam”

we will be .

10/29/15 Using Classes Effectively 23

Properties: Invisible Setters and Getters
class Fraction(object):

"""Instance attributes:
_numerator: [int]
_denominator: [int > 0]"""

@property
def numerator(self):

"""Numerator value of Fraction
Invariant: must be an int"""
return self._numerator

@numerator.setter
def numerator(self,value):

assert type(value) == int
self._numerator = value

>>> p = Fraction(1,2)
>>> x = p.numerator

>>> x = p.numerator()

>>> p.numerator = 2

>>> p.numerator(2)

Python
converts to

Python
converts to

10/29/15 Using Classes Effectively 24

Properties: Invisible Setters and Getters
class Fraction(object):

"""Instance attributes:
_numerator: [int]
_denominator: [int > 0]"""

@property
def numerator(self):

"""Numerator value of Fraction
Invariant: must be an int"""
return self._numerator

@numerator.setter
def numerator(self,value):

assert type(value) == int
self._numerator = value

Specifies that next method is
the getter for property of the

same name as the method

Docstring describing property

Property uses hidden attribute.

Specifies that next method is
the setter for property whose

name is numerator.

10/29/15 Using Classes Effectively 25

Properties: Invisible Setters and Getters
class Fraction(object):

"""Instance attributes:
_numerator: [int]
_denominator: [int > 0]"""

@property
def numerator(self):

"""Numerator value of Fraction
Invariant: must be an int"""
return self._numerator

@numerator.setter
def numerator(self,value):

assert type(value) == int
self._numerator = value

Only the getter is required!

If no setter, then the
attribute is “immutable”.

Goal: Data Encapsulation
Protecting your data from

other, “clumsy” users.

Replace Attributes w/ Properties
(Users cannot tell difference)

10/29/15 Using Classes Effectively 26

