10/29/15

Designing Types Cieomn fursi
8 g 1yp day of class!

* Type: set of values and the operations on them
= int: (set: integers; ops: +,—, *,/,...)
= Time (set: times of day; ops: time span, before/after, ...)
= Worker (set: all possible workers; ops: hire,pay promote,...)
= Rectangle (set: all axis-aligned rectangles in 2D;
ops: contains, intersect, ...)
* To define a class, think of a real fype you want to make
= Python gives you the tools, but does nat do it for you
= Physically, any object can take on any value
= Discipline is required to get what you want

Making a Class into a Type

1. Think about what values you wantin the set
= What are the attributes? What values cantheyhave?

2. Think about what operations you want

= This often influences the previous question
* To make (1) precise: write a class invariant

= Statement we promise to keep true after every method call
* To make (2) precise: write method specifications

= Statement of what method does/what it expects (preconditions)

* Write your code to make these statements true!

Planning out a Class

class Time(object):

""Instances represent times of day. Class Invariant

fnstance Jtrbutes s States what attributes are present
Bour: hour of ey [nt In 0.2] and what values they can have.
min: minute of hour [int in 0.59]""

A statement that will always be

def _intt_(séf, hour, min): true of any Time instance.
"""The time hour:min.
Pre: hour in 0.23; min in 0.59""

def increment(self, hours, mins):

Method Specification
"""Move this time <hours> hours]-

and <mins> minutes into the future. States what the method does.
Pre: hours is int >= 0; mins in 0.59"" Gives preconditions stating what
is assumed true of the arguments.

def isPM(self):
"""Returns: this time is noon or later""

Planning out a Class

class Rectangle(object):

"""Instances represent rectangular

regions of the plane.

Instance Attributes: Class Invariant
t: y coordinate of top edge [float] States what attributes are present
L x coordinate of left edge [float] d what val th h
b: y coordinate of bottom edge [float] [|2N¢ What values they can have.
r x coordinate of right edge [float] A statement that will always be

For all Rectangles, 1<=rand b <=t"" true of any Rectangle instance.

def __init_ (self, t,1 b,)
"""The rectangle [1, r] x [t, b]
Pre: args are floats; 1 <= ;b <= t""

Method Specification

def area(self): } States what the method does.

"""Return: area of the rectangle"" . . .
Gives preconditions stating what

is assumed true of the arguments.

def intersection(self, other):

"""Return: new Rectangle describing
intersection of self with other."""

Implementing an Initializer

def __init__(self, hour, min):
""The time hourmin.

Pre: hour in 0.23; min in 0.59""4 This is true to start

self hour = hour
fmin - min You put code here

<

This should be true
at the end

Instance variables:
hour: hour of day [int in 0.23
min: minute of hour [int in 0.59]

Implementing a Method

Instance variables:
hour: hour of day [int in 0.23]
min: minute of hour [int in 0.59

This is true to start

What we are supposed

S
def increment(self, hours, mins):

_—"to accomplish
""Move this time <hours> hours <]
and <mins> minutes into the future. L.
Pre: hours [int] >= 0; mins in 0.59"" 4——— This is also true to starf

selfmin = sefmin + min

self hour = (self hour + hour +
self. min / 60)

sefmin = self.min % 60

self hour = self hour % R4

v >

You put code here

Instance variables:
hour: hour of day [int in 0.23]
min: minute of hour [int in 0.59

This should be true
at the end

10/29/15

Role of Invariants and Preconditions

Enforce Method Preconditions with assert

* They both serve two purposes

= Help you think through your
plans in a disciplined way

1.

= Communicate to the user® how|
they are allowed to use the class

* Provide the interface of the clayy
= interface btw two programmers
= interface btw parts of an app |2.

¢ Important concept for making

large software systems
= Will return to this idea later

* ...who might well be you!

instersface lintor, fasl noun

a point wheretwo systems, subjects,
organizations, etc., meet and inferact :
the interface between accountancy and
the law.

e chiefly Physics a surface forming a
common boundary between two
portions of matter orspace, e.g,
between two immiscible liquids : the]
surface tensionofa liquid at its
air/liquid interface.

Computing a device or program

enabling a user to communicate with a

computer.

¢ a device or pogram far connecting
two items of hardware or software ©f
that they canbe operated jantly or
communicate with each other.

7T}£ Oxford American Didionarx

class Time(object):
"""Instances represent times of day."

def __init__(self, hour, min):
""The time hourmin,
Pre: hour in 0.23; min in 0.59"""
assert type(hour) == int
assert 0 <= hour and hour < 24
assert type(min) == int
assert 0 <= min and min <60

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0.59"""
assert typehour) == int
assert type (min) == int
assert hour >= 0 and
assert 0 <= min and min <60

Instance Attributes:
hour: hour of day [int in 0.83]
min: minute of hour [int in 0.59]

Initializer creates/initializes all
of the instance attributes.

Asserts in initializer guarantee the
initial values satisfy the invariant.

Asserts in other methods enforce
the method preconditions.

Enforcing Invariants

class Fraction(object): ¢ Idea: Restrict direct access

""Instance attributes:
numerator: top [int]
denominator: bottofn [int >

[

¢ These are just comments!
>>> p = Fraction(1,2)
>>> p.numerator = Hello'

* How do we prevent this?

= Only access via methods

= Use asserts to enforce them

e Examples:

def getNumerator(self):
"""Returns: numerator""
return self numerator

def setNumerator(self,valu e):
"""Sets numerator to value""
assert type(value) == int
self numerator = value

Data Encapsulation

* Idea: Force the user to only use methods
e Do not allow direct access of attributes

Setter Method

Getter Method

e Used to change anattribute

e Replaces all assignment
statements to the attribute

e Bad:
>>> f.numerator = 5

* Good:
>>> f getNumerator(5)

Used to access an attribute

Replaces all usage of
attribute in an expression

Bad:

>>> x = 3*fnumerator
Good:

>>> x = 3*fgetNumerator()

Data Encapsulation

class Fraction(object):
"""Instance attributes:
_numerator: top [int]

Do this for all of
your attributes

_denominator: bottom [int > 0]"""

"""Returns: numerator attrbute""
return self._denomenator €—

l! def getDenomenator(self):

def setDenomenator(self, d):
"""Alters denomenator to be d
Pre:n is an int > 0"
assert type(d) == int
assert 0 < d
self._denominator = d

Naming Convention

The underscore means

“should not access the
attribute directly.”

Precondition is same
as attribute invariant.

Mutable vs. Immutable Attributes

Mutable

Immutable

* Value can change directly

= Change must meet invariant

= Example: t.color in Turtle
e To implement
= Hide the attribute with _

= Implement getter

= Implement setter w/ asserts

* Value can’t change directly

e To implement

= May change “behind scenes”
= Example: t.x in Turtle

= Hide the attribute with _
= Implement getter
= DO NOT implement a setter

