10/18/15

Recall: Classes are Types for Objects

* Values must haveatype ¢ Classes are how we add
new types to Python

= Anobjectis a value
= Object type is a class

Classes

% « Point3
* RGB
y ¢ Turtle

¢ Window

Classes Have Folders Too

Object Folders Class Folders

» Separate foreach instance * Data common to all instances

Name Resolution for Objects

e (object).(name) means pLiss | g [|
= Go the folder for object id3 _ 4
|Pomt3 | |Pomt3 |
= Find attribute/method name « 50 -
= If missing, check class folder y 50 | 0.0 |
= If not in either, raise emror z |3.0 z 0.0

¢ What is in the class folder?

= Data common to all objects
= First must understand the
class definition

Goes inside a
module, just
like a function
definition.

The Class Definition

keyword class
Beginning of a

class definition class < lass-name>(Object y=== Do not forget the colon!
Specification . .
P ""Class sp eclﬁcaxlon

(similar toone
<function definitions>

for a functia)
. ...but not often wed
<asstgnment Statements>

<any other statements also allowed>

[to defire
methods

to define
attributes

clas“ﬁ}’(l‘z;mplé(ogm): ssble dags™ Python creates
e simplest po 55 after reading the
pass class definition

Instances and Attributes

Assignments add object attributes
. = id2
= Example: e.b = 42

Assignments can add class attributes | >
= Example: Example.a = 29

Objects can access class attributes
= Example: print e.a

= But assigning it creates object attribute
N v

Rule: check objectfirst, then class

The Class Specification

class Worker(object):
"""An instance is a worker in an organization. N

Atribute YLnstance has basic worker info, but no salary information.

ATTRIBUTES:
Iname: Worker’s last name. [str]

ssn: Social security no. [int in 0.999999999]
Name boss: Worker's boss. [Worker, or None if no boss]

Method Definitions

* Looks like a functiondef class Pomt3(object):
"""Ingtances are points in 3d space

= But indented inside class % x word [foat]

= The first parameter

A y:y coord [float]
is always called self

z:zcoord [float] "
def distanceTo(self,q):
"""Returns: dist from self to q
Precondition: q a Point3""

e In a method call:

= Parentheses have one less
argument than parameters
assert type(q) == Point3
sqrdst = ((sef x-gx)**8 +
(selfy-qy)**2 +
(self.z-q.2)**R)
return math.sqrt(sqrdst)

= The object in front is
passed to parameter self

* Example: a,.distanceTE(b)

10/18/15

Methods Calls

¢ Example: a.distanceTo() class Pomt3(object):
N """Instances are points in 3d space
e |

x: x coord [float]

ind3

y:y coord [float]
z:zcoord [float] ™"
def distanceTo(self,q):
"""Returns: dist from self to q
Precondition: q a Point3""

assert type(q) == Point3

sqrdst = ((self xqx)**2 +
(self yq.y)**R +
(self 29.2)**R)

return math.sqrt(sqrdst)

Special Method: __init__

two underscores ﬁ
W~ wurnaoh vual UL LI EXAT0)
don’t forget self [Called by the constmctr]

dé(;mzt_(self, n, 5 b):

"""Inttializer: creates a Worker

id8

Has last name n, SSN s, and boss b

Iname

.

Precondition: n a string, s an int in
range 0.999999999, and b either
a Worker or None.

self lname = n

selfssn =5

selfboss = b

use self to assign attributes

Evaluating a Constructor Expression

Worker('Obama', 1234, None)
1. Creates a new object (folder)
of the class Warker
= Instance is initially empty
Worke
2. Puts the folder into heap space
3. Executes the method __init__

= Passes folder name to self

-

= Passes other arguments in order

= Executes the (assignment)
commands in initializer body

4. Returns the object (folder) name

Aside: The Value None

= Some workers have no boss

= Or maybe not assigned yet ~ var2 m
(the buck stops there)

¢ Solution: use value None
= Nonme: Lack of (folder) name

* The boss field is a problem.
= boss refers to a Worker objea

id6
= Will reassign the field later! I_l -
. var3 None
¢ Be careful with None values
X I 3.5 I

= var3.x gives error!

= There is no name in var3 y
= Which Point to use? z

Making Arguments Optional

* We can assign default values class Point3(object):
to __init__ arguments """I[nstances are points in 3d space

= Write as assignments to x: x coord [float]

parameters in definition y:y coord [float]

z: z coord [float]

= Parameters with default

values are optional def _init_(self x=03=02=0):

e Examples: "Initializer: makes a new Point
= p= Point3(Q) #(0,0,0) Precondition: x,y,z are numbers""
= p=Point3(1,2,3) #(123) sefx = x
= p = Point3(1,2) #(1R20) sdfy =y

= p=Point3(y=3) # (03,0 selfz =z
= p=Point3(1,2=R) # (1,0, :

