
More Recursion

Lecture 16

Announcements for This Lecture

Prelim 1

• Need to be working on A4
§ Instructions are posted
§ Just reading it takes a while
§ Slightly longer than A3
§ Problems are harder

• Lab Today: lots of practice!
§ 4 functions are mandatory
§ Lots of optional ones to do
§ Exam questions on Prelim 2

10/20/15 2More Recursion

• Prelim 1 back today!
§ Pick up in Lab Section
§ Solution posted in CMS
§ Mean: 80, Median: 83

• What are letter grades?
§ A bit too early to tell
§ A: Could be a consultant
§ B: Could take 2110
§ C: Good enough to pass

Assignments and Labs

Recall: Reversing a String

Using Recursion

def reverse(s):
"""Returns: reverse of s

Precondition: s a string"""
s is empty
if s == '':

return s

s has at least one char
(reverse of s[1:])+s[0]
return reverse(s[1:])+s[0]

Using a For-Loop

def reverse(s):
"""Returns: reverse of s

Precondition: s a string"""
create an accumulator
copy == ''

accumulate copy in reverse
for x in s:

copy = x+copy
return copy

10/20/15 More Recursion 3

Recall: Reversing a String

Using Recursion

def reverse(s):
"""Returns: reverse of s

Precondition: s a string"""
s is empty
if s == '':

return s

s has at least one char
(reverse of s[1:])+s[0]
return reverse(s[1:])+s[0]

Using a For-Loop

def reverse(s):
"""Returns: reverse of s

Precondition: s a string"""
create an accumulator
copy == ''

accumulate copy in reverse
for x in s:

copy = x+copy
return copy

10/20/15 More Recursion 4

Recall: Iteration

1. Process each item in a sequence
§ Compute aggregate statistics for a dataset,

such as the mean, median, standard deviation, etc.
§ Send everyone in a Facebook group an appointment time

2. Perform n trials or get n samples.
§ OLD A4: draw a triangle six times to make a hexagon
§ Run a protein-folding simulation for 106 time steps

3. Do something an unknown
number of times
§ CUAUV team, vehicle keeps

moving until reached its goal
10/20/15 More Recursion 5

for x in sequence:
process x

for x in range(n):
do next thing

Cannot do this yet
Impossible w/ Python for

Recursion and Iteration

• Recursion theoretically equivalent to iteration
§ Anything can do in one, can do in other
§ But what is easy in one may be hard in other
§ When is using recursion better?

• Recursion is more flexible in breaking up data
§ Iteration typically scans data left-to-right
§ Recursion works with other “slicings”

• Recursion has interesting advanced applications
§ See some of these in Assignment 4

10/20/15 More Recursion 6

have to be the same

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome

• Example:

AMANAPLANACANALPANAMA

• Precise Specification:
def ispalindrome(s):

"""Returns: True if s is a palindrome"""

has to be a palindrome

10/20/15 7More Recursion

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome

• Recursive Function:
def ispalindrome(s):

"""Returns: True if s is a palindrome"""
if len(s) < 2:

return True

// { s has at least two characters }
return s[0] == s[–1] and ispalindrome(s[1:-1])

Recursive case

Base case

Recursive
Definition

10/20/15 8More Recursion

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome

• Recursive Function:
def ispalindrome(s):

"""Returns: True if s is a palindrome"""
if len(s) < 2:

return True

// { s has at least two characters }
return s[0] == s[–1] and ispalindrome(s[1:-1])

Recursive case

Base case

10/20/15 9More Recursion

Example: More Palindromes

def ispalindrome2(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < 2:

return True

// { s has at least two characters }
return (equals_ignore_case(s[0],s[–1])

and ispalindrome2(s[1:-1]))

10/20/15 10More Recursion

Example: More Palindromes

Precise Specification

def ispalindrome2(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < 2:

return True

// { s has at least two characters }
return (equals_ignore_case(s[0],s[–1])

and ispalindrome2(s[1:-1]))

10/20/15 11More Recursion

Example: More Palindromes

Precise Specification

def ispalindrome2(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < 2:

return True

// { s has at least two characters }
return (equals_ignore_case(s[0],s[–1])

and ispalindrome2(s[1:-1]))

def equals_ignore_case (a, b):
"""Returns: True if a and b are same ignoring case"""
return a.upper() == b.upper()

10/20/15 12More Recursion

Example: More Palindromes

def ispalindrome3(s):
"""Returns: True if s is a palindrome
Case of characters and non-letters ignored."""
return ispalindrome2(depunct(s))

def depunct(s):
"""Returns: s with non-letters removed"""
if s == '':

return s
use string.letters to isolate letters
if s[0] in string.letters:

return s[0]+depunct(s[1:])
return depunct(s[1:])

10/20/15 13More Recursion

Use helper functions!
• Often easy to break a

problem into two
• Can use recursion more

than once to solve

Recursion is form of Divide and Conquer

Goal: Solve problem P on a piece of data

10/20/15 More Recursion 14

data

Recursion is form of Divide and Conquer

Goal: Solve problem P on a piece of data

10/20/15 More Recursion 15

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Recursion is form of Divide and Conquer

Goal: Solve problem P on a piece of data

10/20/15 More Recursion 16

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!

Recursion is form of Divide and Conquer

Goal: Solve problem P on a piece of data

10/20/15 More Recursion 17

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!
Where work
is all done

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/20/15 More Recursion 18

5 341267

Approach 1

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/20/15 More Recursion 19

5 341267

Approach 1

341,267

commafy

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/20/15 More Recursion 20

5 341267

Approach 1

341,267

commafy

5

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/20/15 More Recursion 21

5 341267

Approach 1

341,267

commafy

5 ,

Always? When?

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/20/15 More Recursion 22

5 341267

Approach 1

341,267

commafy

5 ,

Always? When?

5341 267

Approach 2

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/20/15 More Recursion 23

5 341267

Approach 1

341,267

commafy

5 ,

Always? When?

5341 267

Approach 2

5,341

commafy

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/20/15 More Recursion 24

5 341267

Approach 1

341,267

commafy

5 ,

Always? When?

5341 267

Approach 2

5,341

commafy

267

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/20/15 More Recursion 25

5 341267

341,267,

commafy

5341

5

267

5,341 , 267

commafy

Always? When? Always!

Approach 1 Approach 2

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""
No commas if too few digits.
if len(s) <= 3:

return s

Add the comma before last 3 digits
return commafy(s[:-3]) + ',' + s[-3:]

10/20/15 More Recursion 26

Recursive case

Base case

How to Break Up a Recursive Function?

def exp(b, c)
"""Returns: bc

Precondition: b a float, c ≥ 0 an int"""

10/20/15 More Recursion 27

Approach 1 Approach 2

12256 = 12 × (12255)

Recursive

12256 = (12128) × (12128)

Recursive Recursive

bc = b × (bc-1) bc = (b×b)c/2 if c even

Raising a Number to an Exponent

Approach 1

def exp(b, c)
"""Returns: bc

Precondition: b a float,
c ≥ 0 an int"""

b0 is 1
if c == 0:

return 1

bc = b(bc)
return b*exp(b,c-1)

Approach 2

def exp(b, c)
"""Returns: bc

Precondition: b a float,
c ≥ 0 an int""”

if c == 0:
return 1

c > 0
if c % 2 == 0:

return exp(b*b,c/2)

return b*exp(b*b,(c-1)/2)
10/20/15 More Recursion 28

Raising a Number to an Exponent

def exp(b, c)
"""Returns: bc

Precondition: b a float,
c ≥ 0 an int""”

b0 is 1
if c == 0:

return 1

c > 0
if c % 2 == 0:

return exp(b*b,c/2)

return b*exp(b*b,c/2)

c # of calls
0 0
1 1
2 2
4 3
8 4
16 5
32 6
2n n + 1

10/20/15 More Recursion 29

32768 is 215
b32768 needs only 215 calls!

Recursion and Objects

• Class Person (person.py)
§ Objects have 3 attributes
§ name: String
§ mom: Person (or None)
§ dad: Person (or None)

• Represents the “family tree”
§ Goes as far back as known
§ Attributes mom and dad

are None if not known
• Constructor: Person(n,m,d)

• Or Person(n) if no mom, dad

10/20/15 More Recursion 30

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

Recursion and Objects
def num_ancestors(p):

"""Returns: num of known ancestors
Pre: p is a Person"""
Base case
No mom or dad (no ancestors)

Recursive step
Has mom or dad
Count ancestors of each one
(plus mom, dad themselves)
Add them together

10/20/15 More Recursion 31

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

11 ancestors

Recursion and Objects
def num_ancestors(p):

"""Returns: num of known ancestors
Pre: p is a Person"""
Base case
if p.mom == None and p.dad == None:

return 0

Recursive step
moms = 0
if not p.mom == None:

moms = 1+num_ancestors(p.mom)
dads = 0
if not p.dad== None:

dads = 1+num_ancestors(p.dad)
return moms+dads

10/20/15 More Recursion 32

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

11 ancestors

.

.

.

.

.

.

.

.

Space Filling Curves

• Draw a curve that
§ Starts in the left corner
§ Ends in the right corner
§ Touches every grid point
§ Does not touch or cross

itself anywhere
• Useful for analysis of

2-dimensional data

Challenge

Starts
Here

Ends
Here

10/20/15 33More Recursion

Hilbert(1):

Hilbert(2):

Hilbert(n): H(n-1)
down

H(n-1)
down

H
(n-1)
left

H
(n

-1
)

rig
ht

Hilbert’s Space Filling Curve

.

.

.

.

.

.

.

.

2n

2n

10/20/15 34More Recursion

Hilbert’s Space Filling Curve

• Given a box
• Draw 2n×2n

grid in box
• Trace the curve
• As n goes to ∞,

curve fills box

Basic Idea

10/20/15 35More Recursion

“Turtle” Graphics: Assignment A4

10/20/15 More Recursion 36

Turn

Move Change Color

Draw Line

