Recursion and Iteration

e Recursion theoretically equivalent to iteration
= Anything cando in one, can do inother
= But what is easy in one may be hard in other
= When is using recursion better?

* Recursion is more flexible in breaking up data
= Iteration typically scans data left-to-right
= Recursion works with other “slicings”

* Recursion has interesting advanced applications

= See some of these in Assignment 4

Example: Palindromes

10/18/15

e String with = 2 characters is a palindrome if:
= its first and last characters are equal, and
= the rest of the characters form a palindrome

* Example:

have to be the same
'/_ \
A

has to be a palindrome
* Precise Specification:
def ispalindrome(s):
"""Returns: True if s is a palindrome"""

Example: Palindromes

e String with = 2 characters is a palindrome if:
= its first and last characters are equal, and

= the rest of the characters form a palindrome

Example: More Palindromes

¢ Recursive Function: Recursive
Definition

def ispalindrome(s):

"""Returns: True if s is a palindrome™"

lif len(s) < 2:

return True

// { s has at least two characters
return s[0] == s[-1] and ispalindrome(s[1:-1])

def ispalindrome®(s):
"""Returns: True if s is a palindrome

Case of characters is ignored."""
if len(s) < &:
| return True

// { shas at least two characters }
return|(equals_ignore_case(s[0],s[-1

and ispalindrome?(s[1:-1]))

|Precise Specificatiotl

def equals_ignore_case (a, b):
| """Returns: True if a and b are same ignoring case'
return a.upper() == b.upper()

nm

Recursion is form of Divide and Conquer

Goal: Solve problem P on a piece of data

data
Idea: Split data into two parts and solve problem

data 1l data 2

. AN J

Y Y
Solve Problem P Solve Problem P

Y Where work
Combine Answer! is all done

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3digits
6.6 commafy('5341367) = 5,341,267
Precondition: s represents a non-negative int™"

Approach 1 Approach 2

5 267
< <

commafy commafy

El 341,267 34

[]
i

How to Break Up a Recursive Function?

def commafy(s):

""Returns: string with commas every 3 digits
e.g. commafy('6341267) = '6,341,267"
Precondition: s represents a nonnegative int"""

No commas if too few digits.

if len(s) <= 3:
| return s

Add the comma before last 3 digits = z

return commafy(s[-3]) + ', + s[-3]

10/18/15

How to Break Up a Recursive Function?

def exp(b, ¢)
"”"Retul‘ns; bc
Precondition: b a float, ¢ = 0 an int"""

Approach 1 Approach 2
12256 = 12 x (1225])

bc=b x (bc—l)

b¢ = (bxb)2 if c even

Raising a Number to an Exponent

def exp(b, ¢) c # of calls
""Returns: b¢ 0 0
Precondition: b a float, 1 1
¢ =0anint"” 2 2
#b0is 1 4 3
ifc==0: 8 4
| retum 1 16 5
32 6
#c>0 2" n+1
ifc% 2==0:
| retumn exp(b*b.c/2) 32768 is 215

b32768 pneeds only 215 calls!

return b*exp(b*b ¢/2)

Recursion and Objects

¢ Class Person (person.py) m B] [P Jene]

= Objects have 3 attributes
= name: String

” m

Jane iRoben I Ellen

= mom: Person (or None)
= dad: Person (or None)
* Represents the “family tree”

= Goes as far back as known

= Attributes mom and dad
are None if not known

e Constructor: Person(nmd)
¢ OrPerson(n) if no mom, dad

Recursion and Objects

def num_ancestors(p):

"""Returns: num of known ancestors ” I 157 I I 1D IHE"‘lher I

Pre: p is a Person"""
Base case

if p.mom=="None and p.dad == Non nem

| return O \4

Recursive step I Jane I IRoberl I I Ellen I
moms =0

if not p.mom ==None:
| moms = 1+num_ancestors(p.mom)
dads=0
if not p.dad==None:
dads = 1+num_ancestors(p.dad)

S

Hilbert’s Space Filling Curve

Hilbert(1):]_]

Hilbert(2): I I I I

2n

2n

Hilbert(n): Ha-1)| |[H@-1)

down down

ol
(I-WH

