
10/18/15

1

Recursion and Iteration

• Recursion theoretically equivalent to iteration
§ Anything can do in one, can do in other
§ But what is easy in one may be hard in other
§ When is using recursion better?

• Recursion is more flexible in breaking up data
§ Iteration typically scans data left-to-right
§ Recursion works with other “slicings”

• Recursion has interesting advanced applications
§ See some of these in Assignment 4

have to be the same

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome

• Example:

AMANAPLANACANALPANAMA

• Precise Specification:
def ispalindrome(s):

"""Returns: True if s is a palindrome"""

has to be a palindrome

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome

• Recursive Function:
def ispalindrome(s):

"""Returns: True if s is a palindrome"""
if len(s) < 2:

return True

// { s has at least two characters }
return s[0] == s[–1] and ispalindrome(s[1:-1])

Recursive case

Base case

Recursive
Definition

Example: More Palindromes

Precise Specification

def ispalindrome2(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < 2:

return True

// { s has at least two characters }
return (equals_ignore_case(s[0],s[–1])

and ispalindrome2(s[1:-1]))

def equals_ignore_case (a, b):
"""Returns: True if a and b are same ignoring case"""
return a.upper() == b.upper()

Recursion is form of Divide and Conquer

Goal: Solve problem P on a piece of data

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!
Where work
is all done

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

5 341267

341,267,

commafy

5341

5

267

5,341 , 267

commafy

Always? When? Always!

Approach 1 Approach 2

10/18/15

2

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""
No commas if too few digits.
if len(s) <= 3:

return s

Add the comma before last 3 digits
return commafy(s[:-3]) + ',' + s[-3:]

Recursive case

Base case

How to Break Up a Recursive Function?

def exp(b, c)
"""Returns: bc

Precondition: b a float, c ≥ 0 an int"""

Approach 1 Approach 2

12256 = 12 × (12255)

Recursive

12256 = (12128) × (12128)

Recursive Recursive

bc = b × (bc-1) bc = (b×b)c/2 if c even

Raising a Number to an Exponent

def exp(b, c)
"""Returns: bc

Precondition: b a float,
c ≥ 0 an int""”

b0 is 1
if c == 0:

return 1

c > 0
if c % 2 == 0:

return exp(b*b,c/2)

return b*exp(b*b,c/2)

c # of calls
0 0
1 1
2 2
4 3
8 4
16 5
32 6
2n n + 1

32768 is 215
b32768 needs only 215 calls!

Recursion and Objects

• Class Person (person.py)
§ Objects have 3 attributes
§ name: String
§ mom: Person (or None)
§ dad: Person (or None)

• Represents the “family tree”
§ Goes as far back as known
§ Attributes mom and dad

are None if not known

• Constructor: Person(n,m,d)
• Or Person(n) if no mom, dad

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

Recursion and Objects
def num_ancestors(p):

"""Returns: num of known ancestors
Pre: p is a Person"""
Base case
if p.mom == None and p.dad == None:

return 0

Recursive step
moms = 0
if not p.mom == None:

moms = 1+num_ancestors(p.mom)
dads = 0
if not p.dad== None:

dads = 1+num_ancestors(p.dad)
return moms+dads

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

11 ancestors

Hilbert(1):

Hilbert(2):

Hilbert(n): H(n-1)
down

H(n-1)
down

H
(n-1)
left

H
(n

-1
)

rig
ht

Hilbert’s Space Filling Curve

.

.

.

.

.

.

.

.

2n

2n

