10/14/15

A Mathematical Example: Factorial

e Non-recursive definition:
nl=nXnlX.. X2X]
=n(n-1 X ... X2 X1)
e Recursive definition:

n!=n@m-1)! forn=0 Recursive case
0l'=1 Base case

What happens if there is no base case?

Example: Fibonnaci Sequence

* Sequence of numbers: 1,1,2,3,5,8,13, ...

ap ap az as a4 as de
= Get the next number by adding previous two
= What is ag?
e Recursive definition:

"d,=dp1+dn Recursive Case
=ap=1 Base Case
"a; =1 (another) Base Case

Why did we need two base cases this time?

Fibonacci as a Recursive Function

def fibonacei(n): e Function that calls itself
""Returns: Fibonacei no. a, = Each call is new frame
Precondition: n = 0 an int"™" = Frames require memory
ifn<=1: = o calls = % memory
| return 1
fihonaxxil |3_
return (fibonacei(n-1)+ o[]
fibonacci(n-R))

fibonauil IL fibonacd I IL
i]

Fibonacci: # of Frames vs. # of Calls

 Fibonacci is very inefficient.
= fib(n) has a stack that is always < n
= But fib(n) makes a lot of redundant calls

Path to end =
the call stack

How to Think About Recursive Functions

1. Have a precise function specification.
2. Base case(s):
= When the parameter values are as small as possible
= When the answer is determined with little calculation.
3. Recursive case(s):
= Recursive calls are used.
= Verify recursive cases with the specification
4. Termination:
= Arguments of calls must somehow get “smaller”

= Each recursive call must get closer to a base case

Understanding the String Example

def num_es(s): * Break problem into parts
""Returns: # of 'e's in s""
s is empty number of e’s in s =
ifg==" number of ¢’s in s[0]
| return 0 + number of e’s in s[1:]

s has at least one 'e'

Solve small part directl:
if5[0) == &5 P Y
um_es(s[1:

| refurn 1+n number of e’s in s =
return num_es(s[1:])) number of e’s in s[1:]
(+1 if s[0] is an '¢')
0 1 len(s) (+0 is s[0] not an '¢')
s |H|el]o Worid! |

10/14/15

Understanding the String Example

Understanding the String Example

e Step 1: Have a precise specification

def num_es(s):
""Returns: #of 'e's n """ “Write” your return
s is empty statement using the
ifg==" : ificafti
I_lgase e specification
| returnO

return # 01 e's m S[O]+# oI ESIHSIJ.:J)
1T §[0] =="¢"

| refurn 1+num_es(s{1:])

return num_es(s[1:]))
e Step 2: Check the base case

= When s is the empty string, 0 is (correctly) returned.

e Step 3: Recursive calls make progress toward termination
def num_es(s): (—IWI
""Returns: #of 'e's m s™"
f; sis e”mpt;y parameter s, so there is progress
1s=="
| returnO

argument s[1:] is smaller than

toward reaching base case 0

return #of 'e's in s[0]+# of 'e'sin s[1:]
if §0] =='¢:

| return 1+num_es(s[1:])
return num_es(s{ 1:]))

e Step 4: Check the recursive case

= Does it match the specification?

Exercise: Remove Blanks from a String

Exercise: Remove Blanks from a String

1. Have a precise specification
def deblank(s):
| ""Returns: s but with its blanks removed™"
2. Base Case: the smallest String sis '
ifg=="
| return s
3. Other Cases: String s has at least 1 character.

return (8[0] with blanks removed) + (s[1:] with blanks removed)

def deblank(s): ¢ Sometimes easier to break

"""Returns: s with blanks removed""" up the recursive case

fs=" = Particularly on small part

| reums = Write recursive case as a
sequence of if-statements

sis not empty

if §[0] is a blank:

| return [1:] with blanks removed

¢ Write code in pseudocode
= Mixture of English and code
= Similar to top-down design
s not empty and s[0] not blank ¢ Stuff in red looks like the
return (s[0] + function specification!
s[1] with blanks removed) = But on asmaller sting
= Replace with deblank(s[1])

Example: Reversing a String

¢ Precise Specification:

= Retumns: reverse of s

* Solving with recursion g
= Suppose we can reverse
a smaller string ' e H

(e.g. less one character)

= Can we use that solution
to reverse whole string?

* Often easy to understand G
first without Python

= Then sit down and code nnnﬂ

Example: Reversing a String

def reverse(s):
""Returns: reverse of s

Precondition: s a string""

s is empty

| return s

1. Precise specification?

2. Base case: correct?

3. Recursive case:
progress to termination?

4. Recursive case: correct?

5 has at least one char
(reverse of s[1:])+s[0]
return reverse(s[1:]1)+s[0]

R S

