A Mathematical Example: Factorial

- Non-recursive definition:

$$
\begin{aligned}
\mathrm{n}! & =\mathrm{n} \times \mathrm{n}-1 \times \ldots \times 2 \times 1 \\
& =\mathrm{n}(\mathrm{n}-1 \times \ldots \times 2 \times 1)
\end{aligned}
$$

- Recursive definition:

$$
\begin{array}{lll}
\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)! & \text { for } \mathrm{n} \geq 0 & \text { Recursive case } \\
0!=1 & & \text { Base case }
\end{array}
$$

What happens if there is no base case?

Fibonacci as a Recursive Function

How to Think About Recursive Functions

1. Have a precise function specification.
2. Base case(s):

- When the parameter values are as small as possible
- When the answer is determined with little calculation.

3. Recursive case(s):

- Recursive calls are used.
- Verify recursive cases with the specification

4. Termination:

- Arguments of calls must somehow get "smaller"
- Each recursive call must get closer to a base case

Example: Fibonnaci Sequence

- Sequence of numbers: $1,1,2,3,5,8,13, \ldots$
$a_{0} \quad a_{1} \quad a_{2} \quad a_{3} a_{4} a_{5} \quad a_{6}$
- Get the next number by adding previous two
- What is a_{8} ?
- Recursive definition:
- $a_{n}=a_{n-1}+a_{n-2} \quad$ Recursive Case
- $a_{0}=1 \quad$ Base Case
- $a_{1}=1 \quad$ (another) Base Case

Why did we need two base cases this time?

Fibonacci: \# of Frames vs. \# of Calls

- Fibonacci is very inefficient.
- $\operatorname{fib}(n)$ has a stack that is always $\leq n$
- But fib(n) makes a lot of redundant calls

Understanding the String Example

- Step 1: Have a precise specification
def num_es(s):
| """Returns: \# of 'e's in s"""
\# s is empty
if $s==$ ":
| return 0
Base case
"Write" your return
statement using the specification
\# return \#of e's in sioj+\# of e's in sाI:I
| return l+num_es(s[1:])
return num_es(s[$1:])$)
- Step 2: Check the base case
- When s is the empty string, 0 is (correctly) returned.

Understanding the String Example

- Step 3: Recursive calls make progress toward termination def num_es(s): \longleftarrow parameter s

- Step 4: Check the recursive case
- Does it match the specification?

Exercise: Remove Blanks from a String

1. Have a precise specification
def deblank(s):
"""Returns: s but with its blanks removed"""
2. Base Case: the smallest String s is ${ }^{\prime \prime}$.
if $s==$ ":
| return s
3. Other Cases: String s has at least 1 character.
return (s[0] with blanks removed) $+(\mathrm{s}[1:]$ with blanks removed $)$

Exercise: Remove Blanks from a String

def deblank(s):

"""Returns: s with blanks removed"""
if $s==$ ":

- Sometimes easier to break up the recursive case
\| return s
\# s is not empty
if $s[0]$ is a blank:
| return $\mathrm{s}[1:]$ with blanks removed
\# s not empty and s[0] not blank return (s[0] +
s[1:] with blanks removed)
- Particularly on small part
- Write recursive case as a sequence of if-statements
- Write code in pseudocode
- Mixture of English and code
- Similar to top-down design
- Stuff in red looks like the
function specification!
- But on a smaller string
- Replace with deblank(s[l:])

Example: Reversing a String				
- Precise Specification: - Returns: reverse of s - Solving with recursion - Suppose we can reverse a smaller string (e.g. less one character) - Can we use that solution to reverse whole string? - Often easy to understand first without Python - Then sit down and code	H			

