
10/14/15

1

A Mathematical Example: Factorial

• Non-recursive definition:
n! = n× n-1 ×… × 2 × 1

= n (n-1 ×… × 2 × 1)

• Recursive definition:
n! = n (n-1)!
0! = 1

for n ≥ 0 Recursive case
Base case

What happens if there is no base case?

Example: Fibonnaci Sequence
• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...

a0 a1 a2 a3 a4 a5 a6

§ Get the next number by adding previous two
§ What is a8?

• Recursive definition:
§ an = an-1 + an-2 Recursive Case
§ a0 = 1 Base Case
§ a1 = 1 (another) Base Case

Why did we need two base cases this time?

Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci no. an

Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
fibonacci(n-2))

• Function that calls itself
§ Each call is new frame
§ Frames require memory
§ ∞ calls = ∞ memory

n

fibonacci 3

5

n

fibonacci 1

4 n

fibonacci 1

3

Fibonacci: # of Frames vs. # of Calls

• Fibonacci is very inefficient.
§ fib(n) has a stack that is always ≤ n
§ But fib(n) makes a lot of redundant calls

fib(5)

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(0)

fib(0)

fib(1)

fib(1)

fib(3)

fib(2) fib(1)

fib(0)fib(1)

Path to end =
the call stack

How to Think About Recursive Functions

1. Have a precise function specification.
2. Base case(s):

§ When the parameter values are as small as possible
§ When the answer is determined with little calculation.

3. Recursive case(s):
§ Recursive calls are used.
§ Verify recursive cases with the specification

4. Termination:
§ Arguments of calls must somehow get “smaller”
§ Each recursive call must get closer to a base case

Understanding the String Example

def num_es(s):
"""Returns: # of 'e's in s"""
s is empty
if s == '':

return 0

s has at least one 'e'
if s[0] == 'e':

return 1+num_es(s[1:])

return num_es(s[1:]))

• Break problem into parts

• Solve small part directly

s
0 1 len(s)
H ello World!

Recursive case

Base case

number of e’s in s =
number of e’s in s[0]

+ number of e’s in s[1:]

number of e’s in s =
number of e’s in s[1:]
(+1 if s[0] is an 'e')

(+0 is s[0] not an 'e')

10/14/15

2

Understanding the String Example

• Step 1: Have a precise specification
def num_es(s):

"""Returns: # of 'e's in s"""
s is empty
if s == '':

return 0

return # of 'e's in s[0]+# of 'e's in s[1:]
if s[0] == 'e':

return 1+num_es(s[1:])

return num_es(s[1:]))

• Step 2: Check the base case
§ When s is the empty string, 0 is (correctly) returned.

Recursive case

Base case

“Write” your return
statement using the

specification

Understanding the String Example

• Step 3: Recursive calls make progress toward termination
def num_es(s):

"""Returns: # of 'e's in s"""
s is empty
if s == '':

return 0

return # of 'e's in s[0]+# of 'e's in s[1:]
if s[0] == 'e':

return 1+num_es(s[1:])

return num_es(s[1:]))

• Step 4: Check the recursive case
§ Does it match the specification?

argument s[1:]

parameter s
argument s[1:] is smaller than
parameter s, so there is progress
toward reaching base case 0

Exercise: Remove Blanks from a String

1. Have a precise specification
def deblank(s):

"""Returns: s but with its blanks removed"""

2. Base Case: the smallest String s is ''.
if s == '':

return s

3. Other Cases: String s has at least 1 character.
return (s[0] with blanks removed) + (s[1:] with blanks removed)

Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s with blanks removed"""
if s == '':

return s

s is not empty
if s[0] is a blank:

return s[1:] with blanks removed

s not empty and s[0] not blank
return (s[0] +

s[1:] with blanks removed)

• Sometimes easier to break
up the recursive case
§ Particularly on small part
§ Write recursive case as a

sequence of if-statements
• Write code in pseudocode

§ Mixture of English and code
§ Similar to top-down design

• Stuff in red looks like the
function specification!
§ But on a smaller string
§ Replace with deblank(s[1:])

Example: Reversing a String

• Precise Specification:
§ Returns: reverse of s

• Solving with recursion
§ Suppose we can reverse

a smaller string
(e.g. less one character)

§ Can we use that solution
to reverse whole string?

• Often easy to understand
first without Python
§ Then sit down and code

H e l l o !

! o l l e H

e l l o !H

! o l l e

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s

Precondition: s a string"""
s is empty
if s == '':

return s

s has at least one char
(reverse of s[1:])+s[0]
return reverse(s[1:])+s[0]

e l l o !

! o l l e

H

1. Precise specification?
2. Base case: correct?
3. Recursive case:

progress to termination?
4. Recursive case: correct?

✔

✔

✔

✔

