Example: Summing the Elements of a List

def sum(thelist):
"""Returns: the sum of all elements in thelist

Precondition: thelist is a list of all numbers
(either floats or ints)"™"

result =0
result =result + thelist[0]
result =result + thelist[1]

y
return resuly (_Problem here

Working with Sequences

* Sequences are potentially unbounded
= Number of elements inside them is not fixed
= Functions must handle sequences of different lengths
= Example: sum([1,2,3]) vs.sum([4.5,6,7,.8.9,10])
* Cannot process with fixed number of lines
= Fach line of code can handle at most one element

= What if # of elements > # of lines of code?

* We need a new control structure

For Loops: Processing Sequences

Print contents of seq The for-loop:
x = seq[0] :

print x for x }n seq:

X = seq1] | printx
print x

* Key Concepts
x = seqflen(seq)-1]
print x = Joop sequence: seq
= Joop variable: x
* Remember: = body: print x

= We cannot program = Also called repetend

For Loops: Processing Sequences

The for-loop: * loop sequence: seq
; * loop variable: x
for x in seq:)
print x e body: print x

To execute the for-loop:

1. Check if thereis a “next”
y

element of loop sequence
eq has\T™® [put next 2. If not, terminate execution
more elts eltin x 3. Otherwise, put the element
in the loop variable
False 4. Execute all of the body
print x .
5. Repeataslong as 1 is true

Example: Summing the Elements of a List

def sum(thelist):

""Returns: the sum of all elements in thelist
Precondition: thelist is a list of all numbers
(either floats or ints)™"

result =0 Accumulator
variable

e’

* loop sequence: thelist

for x in thelist:
| result = result + x |* loop variable: x

* body: result=result+x

return result

For Loops and Conditionals

def num_ints(thelist):
"""Returns: the number of ints in thelist
Precondition: thelist is a list of any mix of types""

result =0

for x in the list:

if type(x) == int:

| result = result+1

return result

10/4/15

Modifying the Contents of a List

def add_one(thelist):
""(Procedure) Adds 1 to every element in the list

Precondition: thelist is a list of all numbers
(either floats or ints)"™"

for x in thelist:
| X =x+1

[DOES NOT WORK!]

procedure; no return

For Loops and Call Frames

Loop back
to line 1

def add_one(thelist):
"""Adds 1 to every elt
Pre: thelist is all numb."""
1| for x in thelist:

add_one(seq):

thelist

2| | x=x+1 X
id4
= 0 5 Increments X in frame
1 4 Does not affect folder
2 7

On The Other Hand

def copy_add_one(thelist):
""Returns: copy with 1 added to every element

Precondition: thelist is a list of all numbers
(either floats or ints)"™"

mycopy =[] # accumulator
for x in thelist:
X =x+1
mycopy.append(x) # add to end of accumulator
return mycopy

Accumulator keeps
result from being lost

For Loops: Processing Ranges of Integers

total = 0; The for-loop:

add the squares of ints
in range 2..200 to total
total = total + 8*2
total = total + 3*3

for x in range(2,201):
| total=total + x*x

¢ The range function:
= range(x):
List of ints 0 to x-1
= range(a,b):
List of ints a to b-1

total = total + 800*200

* Foreach x in the range
2.200,add x*x to total

Modifying the Contents of a List

def add_one(thelist):
""(Procedure) Adds 1 to every element in the list
Precondition: thelist is a list of all numbers

(either floats or ints)""
WORKS'!

size = len(thelist)

for k in range(size):
thelist[k] = thelist[k]+1

procedure; no return

Important Concept in CS:
Doing Things Repeatedly

1. Process each item ina sequence

= Compute aggregate statistics for a dataset,
such as the mean, median, standard deviation,etc.

= Send everyone in a Facebook group an appointment time
2. Perform n trials or getn samples.

= Ad4:draw a triangle six times tomake a hexagon

= Run a protein-folding simulation for 10° time steps

Nl

3. Do something an unknown e
number of times

= CUAUV team, vehicle keeps

