Using Color Objects in A3

e New classes incolormodel idl
= RGB, CMYK, and HSV i1 RCE
e Each has its own attributes r| 128 e &
= RGB: red, blue, green et é
= CMYK: cyan, magenta, blue 0

yellow, black
= HSV: hue, saturation, value ~ >>> import colormodel
« Attributes have invariants ~ >>> ¢ = colormodel. RGB(128,0,0)
>>>rp = cred
>>> ¢.red = 800 # out of range
AssertionError: 500 outside [0,R55]

= Limits the attribute values
= Example: red is int in 0.255

= Get an error if you violate

Errors and the Call Stack

errorpy Crashes produce the call stack:

def function_1(xy): ~ Traceback (most recent call last):
File "errorpy", line 20, in <module>
print function_1(1,0)
def function_2(xy): -~ ™ Fie "errorpy”, lne 8, in function_1
return function_3(xy)

| return function_2(x.y)

return function_Q(xy)
[Fie "errorpy", line 12, in function 2

def function_3(xy): ‘ return function_3(xy)

| return x/y # crash here [Fie "errorpy’, lne 16, in function_3
/ reburn x/y

if _name =='_main_ ¥

Make sure you can see

print function_1(1,0) line numbers in Komodo.

Preferences = Editor

Errors and the Call Stack

i S Eaie, ILCrashes produce the call stack:

dl Global space

Traceback (most recent call last):

N| File "errorpy", line R0, in <module>
print function_1(1,0)

| TebUrD TUNCLON_A(X,y

def function_2(xy):

File "errorpy", line 8, in function_1

return function_3(xy) return function_2(xy)
File "errorpy", line 12, in function 8
def function_3(xy): return function 3(x

| return x/y # crash here

File "errorpy", line 16, in function_3
return x/y

i1 Where emror occurred

Make s an s
| (or where fOllIﬂ) ake sure you can see

line numbers in Komodo.
Preferences = Editor

Assert Statements

assert <boolean> # Creates error if <boolean> false
assert <boolean>, <string> # As above, but displays <String>

° Way to force an error def exchange(amt, from_ec, to_c)
= Why would you do this? ""Returns: amt from exchange

Precondition: amt is a
floas..."™"

assert type(amt) == float

* Enforce preconditions!
= Put precondition as assert.

= If violate precondition,
the program crashes

* Provided code 1n.A3 Will do yourself in A4.
uses asserts heavily

Example: Anglicizing an Integer

def anglicize(n):

"""Returns: the anglicization of int n.

Precondition: n an int, 0 <n <1,000,000""

assert type(n) == int, str(n)+ is not an int'

asser{ O<nandn< 100000]{), str(n)+' is out of ranée'

Check (part of)
the precondition

Error message

when violated

Enforcing Preconditions is Tricky!

def lookup_netid(nid):
"""Returns: name of student with netid nid.

Precondition: nid is a string, which consists of

2 or 3 letters and a number""

assert type(nid) == str, str(nid) + ' is not a string'
assert nid.isalphanum(), nid+' is not just letters/digits'

Returns True if s contains Does this catch

only letters, numbers.

all violations?

Using Function to Enforce Preconditions

9/27/15

def exchange(curr_from, curr_to, amt_from):
"""Returns: amount of curr_to received.

Precondition: curr_from is a valid currency code
Precondition: curr_to isa valid currency code
Precondition: amt_from is a float"""

assert 2999992, ste(curr_from) +' not valid'

assert type(amt_from)==float, str(amt_from) + ' not a float'

Recovering from Errors

* try-except blocks allow us to recover from errors
= Do the code that is in the try-block
= Once an error occurs, jump tothe catch
* Example:
try:
input = raw_input() # get number from user might have an exor
x = float(input) # convert string to ﬂoam/
print 'The next number is +str@+1)
except:
| print Hey! That is not a.number!“*/c

xecutes iferrar happers

Try-Except is Very Versatile

def isfloat(s):

"Returns: True if StI’iIlg
s represents a float™"

Conversion to a

try: float might fail
x = float(s) If attempt succeeds,
return True string s is a float
except:

| return False Otherwise, it is not

Try-Except and the Call Stack

recoverpy e Error “pops” frames off stack

def function. 1(xy): = Starts from the stack bottom

by = Continues until it sees that
| rétum function_2(xy) current line is in a try-block
exoept: = Jumps to except, and then

| return float(inf") proceeds asif no error

function_8

def function_2(xy):

| return function_3(xy) Py
ops

def function_3(x.y): g

function_3
return x/y # crash here

Tracing Control Flow

Tracing Control Flow

def first(x): def third(x):
print 'Starting first. print 'Starting third.
try: assert x < 1
second®) print "Ending third "
except:

print Caiglt ab frst What is the output of firs(2)?

print ‘Ending first’

def second(x):
print 'Starting second.'
try:
| thide
except:
| wint ‘Canght & seoond’
print 'Ending second’

def first(x): def third(x):
print ‘Starting first. print 'Starting third.
try: assert x < 1
second®) print Ending third.'
except:

print ‘Cauglt o frst”

prin: "Ending s’ What is the output of first(0)?

def second(X):
print 'Starting second.'
try:
| thirde)
except:
| pint Caught & seoond’
print 'Ending second’

