Finding the Error

Structure vs. Flow

e Unit tests cannot find the source of an error

e Idea: “Visualize” the program with print statements
def last_name_first(n):

"""Returns: copy of <n> in form <last> <first>""

enfi_ﬁrst = n.find(") Print variable after

print end_first

first = n[:end_first]

print ‘first is +str(fist

last =n[end_first+1:]

print last is +str(last)

return last+', +first

Optional: Annotae
value to make it
easier to identify

Program Structure Program Flow

* Way statements are presenied * Order statements are executed
= Order statements are listed = Not the same as structure
= Inside/outside of a function = Some statements duplicated
= Will see other ways... = Some statements are skipped
* Indicate possibilities over * Indicates what really happens
multiple executions in a single execution

[Have already seen this]

difference with functions

Structure vs. Flow: Example

Conditionals: If-Statements

Program Structure Program Flow

def foo(.): . (Statement .>>> ;Tython foo.py
print Hello'| jisted once Hello ——
executed 3x

Hello
Application code Hello'
if __name__ =='main"
foo() Bugs can occur when we
foo() get a flow other thanone
foo() that we where expecting

Format Example
if <boolean-expression>: # Put x in z if it is positive
<statement> if x> 0:
| z=x
<statement>
xecution:

if <boolean-expression> is true, then execute all of the statemeng

indented directly underneath (until first non-indented state ment)

Conditionals: If-Else-Statements

Conditionals: “Control Flow” Statements

Format Example
if <boolean-expression>: # Put maxofx,yinz
| <statement> if x>y
s | z=x

¢ else:
<statement>
| | 2=y
[Execution:

if <boolean-expression>is true, then execute statements indentefl

under if;; otherwise execute the statements indented under elsec

. Branch Point:
ifb: Evaluate & Choose
| s1#statement

58 Stdtement Execute

ifb:

| sI

else: Program only
takes one path

| s2 each execution

83

Program Flow vs. Local Variables

def max(x,y): * temp is needed for swap
"""Returns: max of x,y"" = x =y loses value of x
swap X, y = “Scratch computation”
put the larger iny = Primary role of local vars
1f’i:m3§] * max(3,0):
‘-y max |_

¥y = temp 2 |I| y

return y

Program Flow and Testing

* Must understand which #Put max of X,y in z
flow caused the error print 'before if!
= Unit test produces error ifx>y:

= Visualization tools show rint 'if 7'
the current flow for error p y

o -
. . . 9 Traces
e Visualization tools? else:

= print statements | print 'else x<=

z=Jy
print 'after if'

= Advanced tools in IDEs
(Integrated Dev. Environ)

Watches vs. Traces

Watch Trace

Traces and Functions

e Visualization tool
(e.g.print statement)

e Visualization tool
(e.g.print statement)

* Looks at variable value < Looks at program flow
* Often after an assignment ¢ Before/after any point
* What you did in lab where flow can change

def shift(p):
print 'Start shift()'
pxX=py
print p.x

Example: flow.py

Py=Dp2z Watches] Traces]
print p.y-

PZ=DpX

print p.z

print 'End shift()

Local Variables Revisited

e Never refer to a variable def max(x,y):
that might notexist """Returns: max of X,y
swap X,y

* Variable “scope” # put larger in temp
= Block (indented group) temp =y
where it was first assigned

X . ifx>y:
= Way to think of variables | temp = x
not actually part of Python P

« Rule of Thumb: Limit return temp

variable usage to its scope

mn

Conditionals: If-Elif-Else-Statements

Format Example

if <boolean-expression>: # Put maxofx, y,zinw

<statement> ifx>yand x>z
elif <boolean-expression>: | w=x
| <statement> elif y >z
| w=y
lse:
else: | w=gz

| <statement>

