Type: Set of values and the operations on them

* Want a point in3D space
= We need three variables
= x,y,zcoordinates
* What if have a lot of points?
= Vars x0, y0, z0 for first point
= Varsxl,yl, z1 fornext point
= This can get really messy
* How about a single variable
that represents a point?

Classes: Types for Objects

* Values must haveatype
= An objectis a value id1
= Object type is a class

* Modules provide classes
= Will show how later

x
* Example: geom y

= Part of CornellExtensions z 5.0

lass name

= Just need to import it
= Classes: Point2, Point3

Objects: Organizing Data in Folders

* An object is like a manila folder [ynique tab
identifier

¢]t contains other variables

= Variables are called attributes /
= These values can change idl

¢]t has an ID that identifies it .
= Unique number assigned by Python
| e by Pabon

(just like a NetID for a Cornellian)
= Cannot ever change

= Has no meaning; only identifies

Constructor: Function to make Objects

* How do we create objects? Variable
= Other types have literals p stores ID
= Example: 1, 'abc', true not object
= No such thing for objects - -

¢ Constructor Function: . 1nstaqt1ated
= Same name as the class id2 object
= Example: Point3(0,0,0) @
= Makes an object (manila folder) X
= Retums folder ID as value

« Example: p = Point3(0,0, 0) y
= Creates a Point object 7

= Stores object’s ID in p

Constructors and Modules

>>> import geom Actually a

[Need to import module | p m big number
that has Point class.

. . g ia2
>>>p=
p = geom.Point3(0,0,0)

{ N\
Constructor is function.
Prefix w/ module name. X -

\ J
>>> id(p) y [00]
Shows the ID of p. Z -

Object Variables

* Variable stores object name
= Reference to the object pl id2 | q| id2 |
= Reason for folder analogy

* Assignment uses object name id2
- Example: q=p
= Takes name from p
= Puts the name in q

[poins]
= Does not make new folder! y

e This is the cause of many 2
mistakes in this course

Objects and Attributes

 Attributes are variables P

that live inside of objects

= Can use in expressions id3

= Can assign values to them
* Access: <variable>.<attr>
x
= Example: p.x
= Look like module variables y
e Putting itall together z

= p = geom.Point3(1,2,3)
" DX=D.y+pz

Call Frames and Objects

e Mutable objects can be Global STUFF

altered in a function call ids D

= Object vars hold mmes!
= Folder accessed by both < 00
global var & parameter —
: Ex?mple:(; Call Frame
def incr_x(q):
B incr_x 1
] gqx=qx+1 —'I l—

>>>p = geom.Point3() a

>>> iner_x(p)

Methods: Functions Tied to Objects

* Method: functiontied to object
= Method call looks like a function p
call preceded by a variable name:
(variable) (method)({arguments)) — id3

= Example: p.distanceTo(q)
= Example: p.abs() # makes xy,z>0
* Just like we saw for strings
= 3= 'abracadabra' z
= g.index('a")
* Are strings objects?

Surprise: All Values arein Objects!

* Includingbasic values
= int, float, bool, str

* Example:
>>>x=2.5
>>> jd(x)

* But they are inmutable
= Contents cannot change

= Distinction betweenvalue
and identity is immaterial

= So we can ignore the folder

Class Objects

e Use name class object to Example: Files
[lis6]

distinguish from other values id6

= Not int, float, bool, str

* Class objects are mutable

name,
position,
state, ...

= You can change them

= Methods can have effects
besides their retun value

¢ Example:
« p = Roint(3,3,0) f= open('jabr.txt’)
s =fread()
= p.clamp(-1,1) f.close() Opens a file on your

disk; returns a file
object you canread

Base Types vs. Classes

Base Types Classes

e Built-into Python * Provided by modules

e Refer to instances as values ¢ Refer to instances as objects

e Instantiate with literals e Instantiate w/ constructors
* Are all immutable e Can alter attributes
e Canignore the folders * Must represent with folders

