CS 1110 Fall2015: Walker White

* Outcomes:
= Fluency in (Python) procedural programming
* Usage of assignments, conditionals, and loops
* Ability to design Python modules and programs

= Competency in object-oriented programming
* Ability to write programs using objects and classes.
= Knowledge of searching and sorting al gorithms
* Knowledge of basics of vector computation

* Website:

= www.cs.cornell .edu/courses/cs 1110/20 15fa/

Class Structure

* Lectures. Every Tuesday/Thursday
= Not just slides; interactive demos almost every lecture
= Because of enrollment, please stay with your section
= Semi-Mandatory. 1 % Participation grade from iClickers
« Section/labs. ACCEL Lab, Carpenter 2" floor
= The “overflow sections” are in Phillips 318
* Guided exercises with TAs and consultants helping out
* Tuesday: 12:20, 1:25,2:30,3:35
* Wednesday: 10:10, 11:15,12:20,1:25,2:30, 3:35,7:20
= Contact Jessica (jd648 @comell.edu) for section conflicts

= Mandatory. Missing more than 2 lowers your final grade

Class Materials

e Textbook. Think Pythonby Allen Downey
= Supplemental text; does not replace lecture
= Hardbound copies for sale in Campus Store
= Book available for free as PDF or eBook

¢ iClicker. Acquire one by Thursday

= Will periodically ask questions during lecture

= Will get credit for answering — even if wrong

oRaur

= iClicker App for smartphone is not acceptable
* Python. Necessary if you want to use own computer

= See course website for how to install the software

Things to Do Before Next Class

1. Registeryour iClicker |* Everythingison website!

= Does not count for = Piazza instructions

grade if not registered = Class announcements
2. Enroll inPiazza = Consultant calendar
3. Sign into CMS = Reading schedule
= Complete the Quiz

= Lecture slides

= Exam dates
= Complete Survey 0

4. Read the textbook

= Chapter 1 (browse)
= Chapter 2 (in detail)

* Check it regularly:

= www.cs.comell.edu/
courses/cs1110/2015fa/

Getting Started with Python

» Designed to be used from 268, & wrmhite
Last login: Tue Aug 19 14:36:29 on t

the “command line” [wmwhite@Ryleh]:~ > python
= OS X/Linux: Termimal Python 2.7.5 (default, Mar 9 2014,

R [GCC 4.2.1 Compatible Apple LLVM 5.¢
* Windows: Command Prompt Type "help", "copyright", "credits"

= Purpose of the firstlab ;» 1+2
: < ”» >>> "Hello'+'World'
¢ Once installed type “python “HelloWorld'
= Starts an interactive shell >> I
= Type commands at >>>
= Shell responds to commands This class uses Python 2.7 .x

¢ Python 3 has many “issues”

¢ Can use it like a calculator » Minimal software support

= Use to evaluate expressions

Python and Expressions

* An expression represents something
= Python evaluates it (turns it into a value)
= Similar to what a calculator does

* Examples:

=23 Literal
(evaluates to self)

= (5 *7+ 2) *0.1 <{ An expression with four]

literals and some operators

Type: Set of values and the operations on them

* Type int represents integers

= values: ..., -3, -2, -1, 0,1, 2,3, 4, 5, ...
« Integer literals look like this: 1,45, 43028030 (no commas or periods)
= operations: +, =, *, /,** unary —

I multiply I I to power of I

* Principle: operations onint values mustyield anint

= Example: 1 / 2 rounds result down to 0
¢ Companion operation: % (remainder)
e 7 % 3 evaluates to 1, remainder when dividing 7 by 3

= Operator / is not an int operation in Python 3 (use // instead)

Type: Set of values and the operations on them

e Type float (floating point) represents real numbers
= values: distinguished from integers by decimal points
« In Python a number with a “.” is a float literal (e g. 2.0)
¢ Without a decimal a number is an intliteral (e g. 2)
= operations: +, =, *, /,** unary -
¢ The meaning for floats differs from that forints
* Example: 1.0/2.0 evaluates ©05
* Exponent notation is useful for large (or small) values
= -22.51e6 is —22.51* 10° or -22510000
= 22.61le-6 is 2251%* 10 or 0.00002251

A second kind
of float literal

Floats Have Finite Precision

* Python stores floats as binary fractions
= Integer mantissa times a power of 2
= Example: 1.25 is 5% 22
=

mantissa exponent

* Impossible to write most real numbers this way exactly
= Similar to problem of writing 1/3 with decimals

= Python chooses the closest binary fraction it can
 This approximation results in representation error

= When combined in expressions, the error can get worse
= Example: type 0.1 + 02 at the prompt >>>

Type: Set of values and the operations on them

* Type boolean or bool represents logical statements
= values: True, False
* Boolean literals are just True and False (have to be capitalized)
= operations: not, and, or
e notb: Trueifb isfalseand Falseif b is true
¢ b and c: True if both b and care true; False otherwise
e borc: Trueifb istrue orc is true; False otherwise

* Often come from comparing int or float values
= Order comparison: i<j i<=j i>=j i>]j
= Equality, inequality: i==j il=j

A means something else!

Type: Set of values and the operations on them

* Type String or str represents text
= values: any sequence of characters
= operation(s): + (catenation, or concatenation)
* String literal: sequence of characters in quotes
= Double quotes: " abcex3$g<&" or "Hello World!"
= Single quotes: Hello World!'
* Concatenation can only apply to strings.
= 'ab' + 'cd' evaluates to 'abed'
= 'ab' + 2 produces an error

Converting Values Between Types

* Basicform: type(value)
= float(R) converts value 2 to typefloat (value now 2 0)
= int(R.6) converts value 2.6 to type int (value now 2)
= Explicitconversion is also called “casting”

¢ Narrow to wide: bool = int = float

* Widening. Python does automatically if needed
= Example: 1/2.0 evaluates to 0.5 (casts 1 to float)

* Narrowing . Python never does this automatically
= Narrowing conversions cause information to be lost
= Example: float(int(R.6)) evaluates to 2.0

