Lecture 22

Loop Invariants
Announcements for This Lecture

Assignments
- A6 due in one week
 - Dataset should be done
 - Get on track this weekend
 - **Next Week**: ClusterGroup
- A7 will be last assignment
 - Due after classes over
 - Posted before Thanksgiving
 - Lab next week
- **No lab** week of Turkey Day

Prelim 2
- **Thursday**, 7:30-9pm
 - A–Sh (Statler Aud)
 - Si–X (Statler 196)
 - Y–Z (Statler 198)
- SDS received e-mail
- **Make-up** is Friday
 - Only if submitted conflict
 - Also received e-mail
- Graded on Saturday

11/13/14
Loop Invariants
Recall: Important Terminology

• **assertion**: true-false statement placed in a program to *assert* that it is true at that point
 ▪ Can either be a *comment*, or an *assert* command

• **invariant**: assertion supposed to "always" be true
 ▪ If temporarily invalidated, must make it true again
 ▪ **Example**: class invariants and class methods

• **loop invariant**: assertion supposed to be true before and after each iteration of the loop

• **iteration of a loop**: one execution of its body
Assertions versus Asserts

- **Assertions** prevent bugs
 - Help you keep track of what you are doing
- Also **track down bugs**
 - Make it easier to check belief/code mismatches
- The **assert** statement is a (type of) assertion
 - One you are enforcing
 - Cannot always convert a comment to an assert

x is the sum of 1..n

Comment form of the assertion.

The root of all bugs!

```
x  ?
n  1
```

```
x  ?
n  3
```

```
x  ?
n  0
```
Preconditions & Postconditions

- **Precondition**: assertion placed before a segment
- **Postcondition**: assertion placed after a segment

Relationship Between Two

If precondition is true, then postcondition will be true
Solving a Problem

precondition

x = sum of 1..n
n = n + l
x = sum of 1..n

postcondition

What statement do you put here to make the postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

11/13/14
Solving a Problem

precondition

x = sum of 1..n
n = n + 1
x = sum of 1..n

postcondition

What statement do you put here to make the postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

Remember the new value of n

Loop Invariants
Invariants: Assertions That Do Not Change

- **Loop Invariant:** an assertion that is true before and after each iteration (execution of repetend)

\[
x = 0; \ i = 2
\]

while \(i \leq 5: \)

\[
\begin{align*}
x &= x + i \times i \\
i &= i + 1
\end{align*}
\]

x = sum of squares of 2..5

Invariant:

\[
x = \text{sum of squares of 2..i-1}
\]

in terms of the range of integers that have been processed so far

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of 2..i-1} \)

while \(i \leq 5 \):

\[x = x + i \times i \]

\[i = i + 1 \]

Post: \(x = \text{sum of squares of 2..5} \)

Integers that have been processed:

- Range 2..i-1:

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of 2..i-1} \)

while \(i \leq 5 \):

\begin{align*}
 x &= x + i \cdot i \\
 i &= i + 1
\end{align*}

Post: \(x = \text{sum of squares of 2..5} \)

Integers that have been processed:

Range 2..i-1: 2..1 (empty)

The loop processes the range 2..5.
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

\[x = x + i\cdot i \]

\[i = i + 1 \]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed:

- Range 2..i-1: 2
- 2

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \) sum of squares of 2..i-1

while \(i \leq 5 \):

\[x = x + i \times i \]
\[i = i + 1 \]

Post: \(x = \) sum of squares of 2..5

Integers that have been processed: 2, 3

Range 2..i-1: 2..3

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

\[x = x + i \cdot i \]
\[i = i + 1 \]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: \(2, 3, 4 \)

Range \(2..i-1 \): \(2..4 \)

The loop processes the range \(2..5 \)
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

\# Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

\[
\begin{align*}
 x &= x + i \times i \\
 i &= i + 1
\end{align*}
\]

\# Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2, 3, 4, 5

Range 2..i-1: 2..5

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\(x = 0; i = 2\)

Inv: \(x = \text{sum of squares of } 2..i-1\)

while \(i <= 5\):
 \(x = x + i \times i\)
 \(i = i + 1\)

Post: \(x = \text{sum of squares of } 2..5\)

Integers that have been processed: 2, 3, 4, 5

Range 2..i-1: 2..5

Invariants were always true just before test of loop condition. So it’s true when loop terminates.

The loop processes the range 2..5
Designing Integer while-loops

Process integers in a..b
inv: integers in a..k-1 have been processed
k = a

while k <= b:
 process integer k
 k = k + 1

post: integers in a..b have been processed

Command to do something

Equivalent postcondition

11/13/14
Loop Invariants
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Postcondition: range b..c has been processed
Designing Integer \texttt{while}-loops

1. Recognize that a range of integers $b..c$ has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

```python
# Process $b..c$

\texttt{while} \ k \leq c:

\hspace{1cm} k = k + 1

# Postcondition: range $b..c$ has been processed
```
Designing Integer **while-loops**

1. Recognize that a range of integers \(b..c \) has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process \(k \))

Process \(b..c \)

Invariant: range \(b..k-1 \) has been processed

```python
while k <= c:
    k = k + 1
```

Postcondition: range \(b..c \) has been processed
Designing Integer \textbf{while}-loops

1. Recognize that a range of integers $b..c$ has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process $b..c$

Initialize variables (if necessary) to make invariant true

Invariant: range $b..k-1$ has been processed

\begin{verbatim}
while $k <= c$:
 # Process k
 $k = k + 1$
\end{verbatim}

Postcondition: range $b..c$ has been processed
Finding an Invariant

Make b True if n is prime, False otherwise

What is the invariant?

b is True if no int in 2..n-1 divides n, False otherwise

Command to do something

Equivalent postcondition
Finding an Invariant

Make b True if n is prime, False otherwise

while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?
Finding an Invariant

Make b True if n is prime, False otherwise

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

1 2 3 … k-1 k k+1 … n

Command to do something

Equivalent postcondition
Finding an Invariant

Make b True if n is prime, False otherwise
b = True
k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

Equivalent postcondition

1 2 3 … k-1 k k+1 … n
Finding an Invariant

Make b True if n is prime, False otherwise
b = True
k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:
 # Process k;
 if n % k == 0:
 b = False
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n
Finding an Invariant

set x to # adjacent equal pairs in s

```
while k < len(s):
    # Process k
    k = k + 1
# x = # adjacent equal pairs in s[0..len(s)-1]
```

Command to do something

for s = 'bebeeb', x = 2

Equivalent postcondition

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s

while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

What is the invariant?

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

for s = 'ebbeee', x = 2

k: next integer to process.
Which have been processed?
Finding an Invariant

set x to # adjacent equal pairs in s

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

What is the invariant?

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

for s = 'ebeee', x = 2
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0

inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
 # Process k
 k = k + 1
 # x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
What is initialization for k?

A: k = 0
B: k = 1
C: k = -1
D: I don’t know

Command to do something
for s = 'ebeee', x = 2

Equivalent postcondition
set x to # adjacent equal pairs in s
\[x = 0 \]
\[k = 1 \]

inv: \(x = \# \text{ adjacent equal pairs in } s[0..k-1] \)

```
while \( k < \text{len}(s) \):
    # Process k
    \( k = k + 1 \)
```

\(x = \# \text{ adjacent equal pairs in } s[0..\text{len}(s)-1] \)

k: next integer to process.

What is initialization for k?

- **A**: \(k = 0 \)
- **B**: \(k = 1 \)
- **C**: \(k = -1 \)
- **D**: I don’t know

Which do we compare to “process” k?

- **A**: \(s[k] \text{ and } s[k+1] \)
- **B**: \(s[k-1] \text{ and } s[k] \)
- **C**: \(s[k-1] \text{ and } s[k+1] \)
- **D**: \(s[k] \text{ and } s[n] \)
- **E**: I don’t know
Finding an Invariant

```python
# set x to # adjacent equal pairs in s
x = 0
k = 1
# inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
    # Process k
    x = x + 1 if (s[k-1] == s[k]) else 0
    k = k + 1
# x = # adjacent equal pairs in s[0..len(s)-1]
```

Command to do something
```
for s = 'ebeee', x = 2
```

Equivalent postcondition
```
A:
B:
C:
D: I don’t know
```

Which do we compare to “process” k?
```
A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know
```

k: next integer to process.
What is initialization for k?
```
A: k = 0
B: k = 1
C: k = -1
D: I don’t know
```
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

c = ??
k = ??

inv:

while k < len(s):
 # Process k
 k = k + 1

c = largest char in s[0..len(s)-1]

1. What is the invariant?

Command to do something

Equivalent postcondition
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

```
c = ??
k = ??
```

inv: c is largest element in s[0..k–1]

```
while k < len(s):
    # Process k
    k = k+1
```

c = largest char in s[0..len(s)–1]

1. What is the invariant?

Equivalent postcondition
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

\[
\text{c = ??} \quad \text{Command to do something}
\]
\[
\text{k = ??}
\]

inv: c is largest element in s[0..k–1]

while k < len(s):
 # Process k
 k = k + 1

c = largest char in s[0..len(s)–1]

Equivalent postcondition

1. What is the invariant?

2. How do we initialize c and k?

A: k = 0; c = s[0]
B: k = 1; c = s[0]
C: k = 1; c = s[1]
D: k = 0; c = s[1]
E: None of the above
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s
c = ?? Command to do something
k = ??
inv: c is largest element in s[0..k–1]
while k < len(s):
 # Process k
 k = k+1
c = largest char in s[0..len(s)–1]

Equivalent postcondition

1. What is the invariant?
2. How do we initialize c and k?

A: k = 0; c = s[0]
B: k = 1; c = s[0]
C: k = 1; c = s[1]
D: k = 0; c = s[1]
E: None of the above

An empty set of characters or integers has no maximum. Therefore, be sure that 0..k–1 is not empty. You must start with k = 1.