
1	

Algorithms: Heart of Computer Science	

•  Algorithm: A step-by-step procedure for how to do
something (usually a calculation).	

•  Implementation: How to write an algorithm in a
specific programming language	

•  Good programmers know how to separate the two	

§  Work out algorithm on paper or in head	

§  Once done, implement it in the language	

§  Limits errors to syntax errors (easy to find), not ���

conceptual errors (much, much harder to find) 	

•  Key to designing algorithms: stepwise refinement	

	

Stepwise Refinement: Basic Principles	

•  Write Specifications First ���
Write a method specification before writing its body	

•  Take Small Steps ���
Do a little at a time; follow the Mañana Principle	

•  Run as Often as You Can ���
This can catch syntax errors	

•  Separate Concerns ���
Focus on one step at a time	

•  Intersperse Programming and Testing ���
When you finish a step, test it immediately	

Mañana Principle	

•  If not in current step, delay to “tomorrow”	

§ Use comments to write steps in English	

§ Add “stubs” to allow you to run program often	

§  Slowly replace stubs/comments with real code	

•  Only create new local variables if you have to	

•  Sometimes results in creation of more functions	

§  Replace the step with a function call	

§  But leave the function definition empty for now	

§  This is called top-down design	

Function Stubs	

Procedure Stubs	

•  Single statement: pass

§  Body cannot be empty	

§  This command does nothing	

•  Example:	

def foo():

pass

Fruitful Stubs	

•  Single return statement	

§  Type should match spec.	

§  Return a “default value”	

•  Example:	

def first_four_letters(s):

return ' ' # empty string

Purpose of Stubs	

Create a program that may not be correct, but does not crash.	

Example: Reordering a String	

•  last_name_first('Walker White') is 'White, Walker'

	

	

def last_name_first(s):�

"""Returns: copy of s in form <last-name>, <first-name>

�

Precondition: s is in the form <first-name> <last-name>�

with one blank between the two names"""

Find the first name

Find the last name

Put them together with a comma

return ' ' # Currently a stub

Example: Reordering a String	

•  last_name_first('Walker White') is 'White, Walker'

	

	

def last_name_first(s):�

"""Returns: copy of s in form <last-name>, <first-name>

�

Precondition: s is in the form <first-name> <last-name>�

with one blank between the two names"""

end_first = s.find(' ')

first_name = s[:end_first]

Find the last name

Put them together with a comma

return first_name # Still a stub

2	

Refinement: Creating Helper Functions	

	

	

def last_name_first(s):

"""Returns: copy of s in the form �

<last-name>, <first-name>�
Precondition: s is in the form�
<first-name> <last-name> with�
with one blank between names""" �
first = first_name(s)

Find the last name

Put together with comma

return first # Stub �

	

 	

	

def first_name(s):

 """Returns: first name in s�
 Precondition: s is in the form�
 <first-name> <last-name> with�
 one blank between names""" �
 end = s.find(' ')

 return s[:end]

	

	

Do This Sparingly	

•  If you might use this step in

another method later	

•  If implementation is rather

long and complicated	

Example: Reordering a String	

•  last_name_first('Walker White') is 'White, Walker'

	

	

def last_name_first(s):�

"""Returns: copy of s in form <last-name>, <first-name>

�

Precondition: s is in the form <first-name> <last-name>�

with one or more blanks between the two names"""

Find the first name

Find the last name

Put them together with a comma

return ' ' # Currently a stub

Exercise: Anglicizing an Integer	

•  anglicize(1) is “one”	

•  anglicize(15) is “fifteen”	

•  anglicize(123) is “one hundred twenty three”	

•  anglicize(10570) is “ten thousand five hundred	

def anglicize(n):

"""Returns: the anglicization of int n.

�

Precondition: 0 < n < 1,000,000"""

pass # ???

	

	

Exercise: Anglicizing an Integer	

def anglicize(n):

"""Returns: the anglicization of int n.

�

Precondition: 0 < n < 1,000,000"""

if < 1000, provide an answer

if > 1000, break into hundreds, thousands parts

use the < 1000 answer for each part , and glue

together with "thousands" in between

return '' # empty string

	

	

Exercise: Anglicizing an Integer	

def anglicize(n):

"""Returns: the anglicization of int n.

�

Precondition: 0 < n < 1,000,000"""

if n < 1000: # no thousands place

 return anglicize1000(n)

if n % 1000 == 0: # no hundreds, only thousands

 return anglicize1000(n/1000) + ' thousand'

else: # mix the two

 return (anglicize1000(n/1000) + ' thousand '+ �

 anglicize1000(n))

	

	

Helper Functions and Errors	

error.py

def function_1(x,y):

return function_2(x,y)

def function_2(x,y):

return function_3(x,y)

def function_3(x,y):

return x/y # crash here

if __name__ == '__main__':

print function_1(1,0)

Error list provides:
§  Function where error is found
§  Every function that called it
Traceback (most recent call last):

 File "error.py", line 20, in <module>

 print function_1(1,0)

 File "error.py", line 8, in function_1

 return function_2(x,y)

 File "error.py", line 12, in function_2

 return function_3(x,y)

 File "error.py", line 16, in function_3

 return x/y

