Lecture 24

Interfaces
(and More Arrays)

Announcements for This Lecture

Material Assignments
e Section 12.1 o A6 still being graded
= Compare with section 4.7 * Done by Saturday
= Relevant to assignment * Work on Assignment A7
e Next week is wrap up = Should have read by now
= Tue: Leaving DrJava = Keep track of the dates
= Thu: Where to from here? * Makes it manageable

* Review sessions in 2 weeks * Major push this weekend

= Details next week * Due Saturday after classes

04/26/12 Arrays & Interfaces 2

Carry over from last time...

Pascal’s Triangle

1 0
1 1 1

1 2 1 2

1 3 31 3
1 4 6 4 1 4
1 5 10 10 5 1 5

e Creating the triangle:
= The first and last entries on each row are 1.
= Each other entry 1s the sum of the two entries above it

= Row r has r+1 values.

04/26/12 Arrays & Interfaces

Pascal’s Triangle

1 0

1 1 1

1 2 1 2

1 3 3 1 3

1 4 6 4 1 4

1 5 10 10 5 1 5

* Entry p[1][j] = number of ways 1 elements
can be chosen from a set of size j !

* plil[jl = “i choose j” = (Jl)

Recursive formula:
for 0 <i<j, plillj] =pli-11[j-11+ p[i-1][]]

Pascal’s Triangle

1 0

1 1 1

1 2 1 2

1 3 3 1 3

1 4 6 4 1 4
1 5 10 10 5 1 5

 Binomial Theorem: Row r gives the coefficients of (x + y)

- (X-Fy)2 = 1x% + 2xy + ly2

. (X-ky)3 = 1x0 + 3X2y + 3xy2 + 1y3
= (x+y) = S (k choose r) xKy'K
O<k=<r

04/26/12 Arrays & Interfaces

Ragged Arrays for Pascal’s Triangle

/** Yields: ragged array of first n rows of Pascal’s triangle. Precondition: 0 <n */
public static int[][] pascalTriangle(int n) {
int[][] b= new int[nl[]; // First n rows of Pascal's triangle
// invariant: rows 0..i-1 have been created
for (int i = 0; i = b.length; i= i+1) {
bli]= new int[i+1]; // Create row i of Pascal's triangle
b[i][0]= 1; // Calculate row i of Pascal's triangle
// invariant b[i][0..j-1] have been created
for (int j= 1;j < j=j+1) {
bli][jl= bli-1][j-1] + bli-1][j];

}

bli]li]= 1;
}
return b;

}

04/26/12 Arrays & Interfaces

Summing Up a Multidimensional Array

/** Yields: Sum of elements of b.
* Precondition: b is an Integer or an array with base type Integer. */
public static int sum(Object b) {
if (b instanceof Object[]) {
Object[] bb= (Object[]) b;
int sum= 0;
//inv: sum = sum of b[0..k-1]
for (int k= 0; k < bb.length; k= k+1) {

sum= sum + sum(bb[k]); .
} Recursive call
return sum; on nested array
}
// { b has type Integer }
return O + (Integer) b; Base Case

}

04/26/12 Arrays & Interfaces

New Topic: Interfaces

A Subclassing Example

e (Classes for Shapes:

= Rectangle: All angles equal _

* Rhombus: All sides same length '

Rhombus
= Square: All angles equal and all - and a
sides same length Rectangle

* A square inherits from both rectangle and rhombus
= public class Rectangle { ... }
= public class Rhombus { ... }
= public class Square extends Rectangle, Rhombus { ... }

04/26/12 Arrays & Interfaces

Problem: Can Only Extend One Class

public class C extends CH2 { ...]

public class C1 {
public int m(Q) {

public class C2 {
public int m(Q) {

return 2; return 3;

} }

public int p() { public int qO) {
return ...; return ...;

} }

)

04/26/12

Which m()
1s inherited?

Arrays & Interfaces

11

Problem: Can Only Extend One Class

public class C extends COMgR { ...]

public abstract class C1 { public abstract class C2 {
public abstract int m(Q); public abstract int mQ;
public abstract int pQ; public abstract int qO;
} }
e This 1s much better
= Method bodies are not given Java must have a
. . . guarantee that all the
= Nothing to inherit (or confuse) methods are abstract.

e But still not allowed by Java

04/26/12 Arrays & Interfaces

Use an Interface

public class C implements C1, C2 { ... }

public interface C1 {
public int m(Q);
public int p();

)

public interface C2 {
public int m();
public int qO);

)

* All methods in an interface are abstract

= No need for “abstract” keyword

= Technically, “public” i1s also redundant (and is optional)

= Example: java.awt.event.ActionListener

04/26/12

Arrays & Interfaces

13

Reading Class Definitions

public class Canine extends Animal { ... }

public class Dog extends Canine implements Companion, Guardian {...}

= (Canines are animals. Dogs are canines.

= Dogs also can serve as companions or as guardians.

subclasses:
nested
categories

04/26/12

animals

4
\ dogs

~—"

mpanions

guardians

Arrays & Interfaces

interfaces:
overlapping
categories

14

Application: Generalized Sorting

e Sorting is general, but notion of “<” may change
= Recommender systems sort by quality, reviews, etc.
= Travel sites sort by price, departure, etc.
= Also, ascending vs. descending order

* Do not want to write many sort procedures:

= public void sort(int[] arr) {...}

= public void sort(double[] arr) {...}
= public void sort(Movie[] arr) {...}
= public void sort(Flight[] arr) {...}

 What if they all had a comparison method?

04/26/12 Arrays & Interfaces

15

Interface java.util.Comparable

/** Comparable requires method compareTo*/
public interface Comparable {
/** Yields: a negative integer if this object < ¢,
* Yields: O if this object = ¢,
* Yields: a positive integer if this object > c.
* Throws a ClassCastException if ¢ cannot
* be cast to the class of this object. */

int compareTo(Object ¢);

abstract method: body replaced by ;

Every class that implements Comparable must
override compareTo(Object).

04/26/12 Arrays & Interfaces

Implementing

Classes

Boolean
Byte
Double

Integer

String
Calendar
Time

Timestamp

16

Using an Interface as a Type

/** Swap b[i] and b[j] to put larger in b[j] */
public static void swap(Comparable [] b, int 1, int j) {
if (b[j].compareTo(b[i]) < 0) {
Comparable temp= b[i];
b[i]=b[jl;
b[j]= temp;

¥

public class Movie implements Comparable {
String name;
/** Yields -1, 0, or +1 if this Movie’s name comes alphabetically before, at, or after c.
* Throws a ClassCastException if ¢ cannot be cast to Movie.*/
public int compareTo(Object ¢) {

return this.name.compareTo(((Movie) ¢).name); // String implements Comparable

¥

04/26/12 Arrays & Interfaces

17

Declaring Your Own Interfaces

/** comment */

public interface <interface-name> {
/** method spec for function*/
int compareTo(...); <«

Use “;” instead of a body

/** method spec for procedure”/

void doSomething(...); Can add modifier if you wish.

/** explanation of constant x*/
int x=17;

}

Every field 1s implicitly public, static, and final.
You can put these modifiers on them 1f you wish.

04/26/12 Arrays & Interfaces

Methods are implicitly public.

18

Class Can Implement Many Interfaces

/** comment */
public class C implements Interl, Interd, Interd{

)

* Implements three interfaces: Interl, Inter2, and Inter3
* Must implement methods in all of them
 Example: Recommendation systems

* Need to determine similarity (Similar interface)
= Need to sort on this similarity (Comparable interface)

04/26/12 Arrays & Interfaces

19

