
4/26/12	

1	

Announcements for This Lecture	

Material	

•  Section 12.1	

  Compare with section 4.7	

  Relevant to assignment	

•  Next week is wrap up	

  Tue: Leaving DrJava	

  Thu: Where to from here?	

•  Review sessions in 2 weeks	

  Details next week	

Assignments	

•  A6 still being graded	

  Done by Saturday	

•  Work on Assignment A7	

  Should have read by now	

  Keep track of the dates	

•  Makes it manageable	

•  Major push this weekend	

  Due Saturday after classes	

Pascal’s Triangle	

 1 	

 	

 	

 	

 	

0	

 1 1 	

 	

 	

 	

1	

	

 	

 1 2 1 	

 	

 	

 	

2	

 1 3 3 1 	

 	

 	

 	

3	

 1 4 6 4 1 	

 	

 	

4 	

 1 5 10 10 5 1 	

 	

 	

5	

	

 	

 	

 	

 	

 	

 	

 	

… 	

•  Binomial Theorem: Row r gives the coefficients of (x + y) r	

  (x + y)2 = 1x2 + 2xy + 1y2	

  (x + y)3 = 1x3 + 3x2y + 3xy2 + 1y3	

  (x + y)r = ∑ (k choose r) xkyr-k ���
 0 ≤ k ≤ r	

Ragged Arrays for Pascal’s Triangle	

/** Yields: ragged array of first n rows of Pascal’s triangle. Precondition: 0 ≤ n */

public static int[][] pascalTriangle(int n) {

 int[][] b= new int[n][]; // First n rows of Pascal's triangle

 // invariant: rows 0..i-1 have been created

 for (int i = 0; i != b.length; i= i+1) {

 b[i]= new int[i+1]; // Create row i of Pascal's triangle

 b[i][0]= 1; // Calculate row i of Pascal's triangle

 // invariant b[i][0..j-1] have been created

 for (int j= 1; j < i; j= j+1) {

 b[i][j]= b[i-1][j-1] + b[i-1][j];

 }

 b[i][i]= 1;

 }

 return b;

}

A Subclassing Example	

•  Classes for Shapes:	

  Rectangle: All angles equal	

  Rhombus: All sides same length	

  Square: All angles equal and all ���
 sides same length	

•  A square inherits from both rectangle and rhombus	

  public class Rectangle { … }

  public class Rhombus { … }

  public class Square extends Rectangle, Rhombus { … }

Rhombus
and a 	

Rectangle	

Problem: Can Only Extend One Class	

public class C1 {

 public int m() {

 return 2;

 }

 public int p() {

 return …;

 }

}

public class C2 {

 public int m() {

 return 3;

 }

 public int q() {

 return …;

 }

}

public class C extends C1, C2 { … }

Which m() ���
is inherited? 	

✗	

Use an Interface	

public interface C1 {

 public int m();

 public int p();

}

public interface C2 {

 public int m();

 public int q();

}

public class C implements C1, C2 { … }

•  All methods in an interface are abstract	

  No need for “abstract” keyword	

  Technically, “public” is also redundant (and is optional)	

  Example: java.awt.event.ActionListener	

4/26/12	

2	

Reading Class Definitions	

public class Canine extends Animal { … }

public class Dog extends Canine

  Canines are animals. Dogs are canines.
  Dogs also can serve as companions or as guardians.

implements Companion, Guardian {…}	

dogs	

animals	

 canines	

subclasses:
nested
categories	

companions	

guardians	

interfaces:	

overlapping���
categories	

Application: Generalized Sorting	

•  Sorting is general, but notion of “<” may change	

  Recommender systems sort by quality, reviews, etc.	

  Travel sites sort by price, departure, etc.	

  Also, ascending vs. descending order	

•  Do not want to write many sort procedures:	

  public void sort(int[] arr) {…}

  public void sort(double[] arr) {…}

  public void sort(Movie[] arr) {…}

  public void sort(Flight[] arr) {…}

•  What if they all had a comparison method?	

Interface java.util.Comparable 	

/** Comparable requires method compareTo*/

public interface Comparable {

 /** Yields: a negative integer if this object < c,

 * Yields: 0 if this object = c,

 * Yields: a positive integer if this object > c.

 * Throws a ClassCastException if c cannot

 * be cast to the class of this object. */

 int compareTo(Object c);

}

•  Boolean	

•  Byte	

•  Double	

•  Integer	

•  …	

•  String	

•  Calendar	

•  Time	

•  Timestamp	

•  …	

Implementing	

Classes	

abstract method: body replaced by ;	

Every class that implements Comparable must
override compareTo(Object).	

Using an Interface as a Type	

/** Swap b[i] and b[j] to put larger in b[j] */	

public static void swap(Comparable [] b, int i, int j) {	

	

if (b[j].compareTo(b[i]) < 0) {	

	

 	

Comparable temp= b[i];	

	

 	

b[i]= b[j];	

	

 	

b[j]= temp;	

	

}	

}	

public class Movie implements Comparable {	

	

String name;	

	

/** Yields -1, 0, or +1 if this Movie’s name comes alphabetically before, at, or after c. 	

	

 * Throws a ClassCastException if c cannot be cast to Movie.*/	

	

public int compareTo(Object c) {	

	

 	

return this.name.compareTo(((Movie) c).name); // String implements Comparable	

	

}	

}	

Declaring Your Own Interfaces	

/** comment */

public interface <interface-name> {

 /** method spec for function*/

 int compareTo(…);

 /** method spec for procedure */

 void doSomething(…);

 /** explanation of constant x*/

 int x= 7;

}

Use “;” instead of a body

Every field is implicitly public, static, and final.
You can put these modifiers on them if you wish.

Methods are implicitly public.
Can add modifier if you wish.

Class Can Implement Many Interfaces	

/** comment */

public class C implements Inter1, Inter2, Inter3{

 …

}

•  Implements three interfaces: Inter1, Inter2, and Inter3	

  Must implement methods in all of them	

•  Example: Recommendation systems	

  Need to determine similarity (Similar interface)	

  Need to sort on this similarity (Comparable interface)	

