Announcements for This Lecture

4/26/12

Material Assignments

e Section 12.1
= Compare with section 4.7

¢ A6 still being graded
= Done by Saturday
¢ Work on Assignment A7
= Should have read by now

= Relevant to assignment
* Next week is wrap up
= Tue: Leaving DrlJava
= Thu: Where to from here?
* Review sessions in 2 weeks

= Details next week

= Keep track of the dates

* Makes it manageable

* Major push this weekend
= Due Saturday after classes

Pascal’s Triangle

1 0

1 1 1

1 2 1 2

1 3 3 1 3

1 4 6 4 1 4

1 5 10 10 5 1 5

* Binomial Theorem: Row r gives the coefficients of (x +y) r
. (x+y)2 = 1x2 + 2xy + ly2
. (x+y)3 = 1x3 + 3x2y + 3xy2 + ly3
= x+y) = Y (k choose r) xKy'K
Os<ks=sr

Ragged Arrays for Pascal’s Triangle

/** Yields: ragged array of first n rows of Pascal’s triangle. Precondition: 0 < n */
public static int[][] pascalTriangle(int n) {
int[][] b= new int[n][}; // First n rows of Pascal's triangle
// invariant: rows 0..-1 have been created
for (int i = 0; i I= b.length; i= i+1) {
bli]= new int[i+1]; // Create row i of Pascal's triangle
bi][0]= 1; // Calculate row i of Pascal's triangle
// invariant b[i][0.j-1] have been created
for (int j= 1;j <1i; j=j+1) {
blljl= bl-1](-11 + bli-11(j};
}
blJli}= 1;
}

return b

A Subclassing Example

* Classes for Shapes:
= Rectangle: All angles equal

= Rhombus: All sides same length '

Rhombus
= Square: All angles equal and all - and a
sides same length Rectangle

* A square inherits from both rectangle and rhombus
= public class Rectangle { ... }
= public class Rhombus { ... }
= public class Square extends Rectangle, Rhombus { ... }

Problem: Can Only Extend One Class

public class C extends CHER { ... }

public class C1 { public class C2 { ‘

Use an Interface

public int mQ) { public int mQ) {

| return g; return 3; | l:’j:k‘lcel:lf;g?
} }
public int pQ { public int q() {
return ...; return ...;
} }
} }

public class C implements C1, C2 { ... }

public interface C1 { public interface C2 {
public int mQ); public int mQ);
public int pQ; public int qQ);

} }

* All methods in an interface are abstract
= No need for “abstract” keyword
= Technically, “public” is also redundant (and is optional)

= Example: java.awt.event.ActionListener




Reading Class Definitions

public class Canine extends Animal { ... }
public class Dog extends Canine implements Companion, Guardian {...}

= Canines are animals. Dogs are canines.

= Dogs also can serve as companions or as guardians.

4/26/12

companions
.
subclasses: / -
nested d ) interfaces:
categories \ ::gg}zg::g
S

guardians

Application: Generalized Sorting

» Sorting is general, but notion of “<” may change
= Recommender systems sort by quality, reviews, etc.
= Travel sites sort by price, departure, etc.
= Also, ascending vs. descending order

* Do not want to write many sort procedures:
= public void sort(int[] arr) {...}
= public void sort(double[] arr) {...}
= public void sort(Movie[] arr) {...}
= public void sort(Flight[] arr) {...}

* What if they all had a comparison method?

Interface java.util.Comparable

/** Comparable requires method compareTo*/ Implementing
public interface Comparable { Classes
/** Yields: a negative integer if this object < ¢, « Boolean
* Yields: O if this object = ¢, « Byte
* Yields: a positive integer if this object > ¢.
* Throws a ClassCastException if ¢ cannot * Double
* be cast to the class of this object. */ * Integer
int compareTo(Object c); ®
} e String
abstract method: body replaced by ; * Calendar
¢ Time
Every class that implements Comparable must + Timestamp
override compareTo(Object). .

Using an Interface as a Type

/#* Swap bli] and blj] to put larger in b[j] *
public static void swap(Comparable [] b, inti. int j) {
if (b[j].compareTo(bli]) < 0) {
Comparable temp= bli];
blil=b[jl:
bljl= temp;

}

public class Movie implements Comparable {
String name;
Yields -1, 0, or +1 if this Movie's name comes alphabetically before, at, or after ¢
Throws a ClassCastException if ¢ cannot be cast to Movie
public int compareTo(Object ¢) {
return this.name.compareTo((Movie) c).name); // String implements Comparable

i

Declaring Your Own Interfaces

/** comment */
public interface <interface-name> {
/** method spec for function*/
int compareTo(...); «———Use “;” instead of a body

/** method spec for procedurg”7

void doSomething(...): Methods are implicitly public.

Can add modifier if you wish.
/** explanation of constant x*/

int x=17;
}

Every field is implicitly public, static, and final.
You can put these modifiers on them if you wish.

Class Can Implement Many Interfaces

/** comment */
public class C implements Interl, Inter?, Inter3{

}

e Implements three interfaces: Interl, Inter2, and Inter3
= Must implement methods in all of them

* Example: Recommendation systems
= Need to determine similarity (Similar interface)
= Need to sort on this similarity (Comparable interface)




