
4/22/12	

1	

Announcements for This Lecture	

Material	

•  Section 9.1	

  Last new material for final!	

•  Section 12.1 next time	

  Relevant to assignment	

  But not on the exam	

•  Next week: wrapping up	

•  Review sessions in 2 weeks	

  Will announce next week	

Assignments	

•  A6 still being graded	

  Having to “eyeball it”	

  Will take us this week	

•  Assignment A7 now posted	

  Last assignment of semester	

  Please meet suggested dates	

•  Makes it manageable	

  Due Saturday after classes	

Prelim II: How I Lowered the Mean	

/** Yields: number of family members

 * (including profile p and his/her

 * ancestors) with given first name */

public int withName(String s) {

 int count = �

 (getName().equals(s) ? 1 : 0);�

 if (father != null) �
 count = count+father.withName(s);�

 if (mother != null) �
 count = count+mother.withName(s);

 return count;

}

•  Progress to Termination 	

  Arguments of recursive calls

must somehow get “smaller” 	

  Each call closer to base case	

John Smith III	

John Smith Jr	

 Jane Brown	

John Smith Sr	

 Rachel Evans	

Base Case	

“smaller” 	

than p	

p 	

 Instance Method	

What is Up with reveal1 in A6?	

/** Extract and return … */

public String reveal() {

 …

 int p= 4;

 String result= "";

 // inv: All hidden chars before

 // pixel p are in result[0..k-1]

 for (int k= 0; k < len; k= k+1) {

 result= result +

 (char) (getHidden(p));

 p= p+1;

 }

 return result;

}

/** Extract and return … */

public String reveal() {

 …

 int p= 4;

 char[] result= new char[len];

 // inv: All hidden chars before

 // pixel p are in result[0..k-1]

 for (int k= 0; k < len; k= k+1) {

 result[k]=

 (char) (getHidden(p));

 p= p+1;

 }

 return new String(result);

}

n2 algorithm
(n is the length

of message)

linear algorithm
(n time steps)

Try it Yourself	

Overview of Two-Dimensional Arrays	

•  Type of d is int[][] 	

 (“int array array”/ “an array of int arrays”)	

•  To declare variable d:	

 int d[][];	

•  Create a new array and assign to d:	

 d = new int[5][4]; 	

•  Initializer for two-dimensional array:	

 int[][] d = {{5,4,7,3},{4,8,9,7},{5,1,2,3},{4,1,2,9},{6,7,8,0}};	

5 4 7 3	

4 8 9 7	

5 1 2 3	

4 1 2 9 	

6 7 8 0	

d	

0 1 2 3 	

0	

1	

4	

2	

3	

Overview of Two-Dimensional Arrays	

•  Access value in position at row 3, col 2:	

	

d[3][4]	

•  Access value in position at row 3, col 2:	

	

 d[3][2] = 8;	

 Some Mysterious Features	

•  An odd symmetry	

  Number of rows of d: d.length	

  Number of columns in row r of d: d[r].length	

•  Also, try toString(int[]) in the demo	

5 4 7 3	

4 8 9 7	

5 1 2 3	

4 1 2 9 	

6 7 8 0	

d	

0 1 2 3 	

0	

1	

4	

2	

3	

How Multidimensial Arrays are Stored	

•  int b[][]= { {9, 6, 4}, {5, 7, 7} };	

•  b holds name of a one-dimensional array object 	

  Has b.length elements	

  Its elements are the names of 1D arrays	

•  b[i] holds the name of a one-dimensional array of ints 	

  Has length b[i].length 	

@4e0a1	

 9	

 6	

 4	

@1e3ff	

 5	

 7	

 7	

@b8d92	

@4e0a1	

@1e3ff	

 @b8d92	

 b	

9 6 4	

5 7 7	

4/22/12	

2	

Ragged Arrays: Rows w/ Different Length	

•  Declare variable b of type int[][] 	

	

int[][] b; 	

•  Create a 1-D array of length 2 and store name in b	

	

b= new int[2][] // Elements have int[] (and start as null)	

•  Create int array, store its name 	

in b[0]	

	

b[0]= new int[] {17, 13, 19}; 	

•  Create int array, store its name in b[1]	

	

b[1]= new int[] {28, 95}; 	

Ragged Arrays: Rows w/ Different Length	

@4e0a1	

 17	

 13	

 19	

@1e3ff	

 28	

 95	

@b8d92	

 @b8d92	

 b	

•  Create int array, store its name 	

in b[0]	

	

b[0]= new int[] {17, 13, 19}; 	

•  Create int array, store its name in b[1]	

	

b[1]= new int[] {28, 95}; 	

@4e0a1	

@1e3ff	

0	

1	

2	

1	

 1	

0	

0	

Aside: Image Array	

•  ImageArray used 1D array	

  Flattened version of 2D array	

  Simulated with p = r*length+c

•  Uses less memory	

  Each row a folder in 2D array	

  ImageArray uses one folder	

•  Faster to access	

  2D array needs 2 memory look-ups	

  1D array is math+memory look-up	

  Computation faster than memory	

•  But 1D is harder to use 	

5 4 7 3	

4 8 9 7	

5 1 2 3	

4 1 2 9 	

6 7 8 0	

a	

0 1 2 3 	

0	

1	

4	

2	

3	

5 4 7 3 4 8 9 7 …	

b	

Pascal’s Triangle	

 1 	

 	

 	

 	

 	

0	

 1 1 	

 	

 	

 	

1	

	

 	

 1 2 1 	

 	

 	

 	

2	

 1 3 3 1 	

 	

 	

 	

3	

 1 4 6 4 1 	

 	

 	

4 	

 1 5 10 10 5 1 	

 	

 	

5	

	

 	

 	

 	

 	

 	

 	

 	

… 	

•  Entry p[i][j] = number of ways i elements ���
can be chosen from a set of size j !	

•  p[i][j] = “i choose j” = 	

Recursive formula:���
 for 0 < i < j, p[i][j] = p[i–1][j–1] + p[i–1][j]	

()	

i���
j	

Pascal’s Triangle	

 1 	

 	

 	

 	

 	

0	

 1 1 	

 	

 	

 	

1	

	

 	

 1 2 1 	

 	

 	

 	

2	

 1 3 3 1 	

 	

 	

 	

3	

 1 4 6 4 1 	

 	

 	

4 	

 1 5 10 10 5 1 	

 	

 	

5	

	

 	

 	

 	

 	

 	

 	

 	

… 	

•  Binomial Theorem: Row r gives the coefficients of (x + y) r	

  (x + y)2 = 1x2 + 2xy + 1y2	

  (x + y)3 = 1x3 + 3x2y + 3xy2 + 1y3	

  (x + y)r = ∑ (k choose r) xkyr-k ���
 0 ≤ k ≤ r	

Ragged Arrays for Pascal’s Triangle	

/** Yields: ragged array of first n rows of Pascal’s triangle. Precondition: 0 ≤ n */

public static int[][] pascalTriangle(int n) {

 int[][] b= new int[n][]; // First n rows of Pascal's triangle

 // invariant: rows 0..i-1 have been created

 for (int i = 0; i != b.length; i= i+1) {

 b[i]= new int[i+1]; // Create row i of Pascal's triangle

 b[i][0]= 1; // Calculate row i of Pascal's triangle

 // invariant b[i][0..j-1] have been created

 for (int j= 1; j < i; j= j+1) {

 b[i][j]= b[i-1][j-1] + b[i-1][j];

 }

 b[i][i]= 1;

 }

 return b;

}

