Interlude

Object Oriented Design



Announcements for This Lecture

This Week Assignments
* Today 1s an Interlude e Assignment 5 almost done
= Nothing today is on exam = Should be graded by tonight
= Another “Big Picture” talk = (Grades looking okay so far
= Relevant to Assignment 6 * Keep on Assignment 6
* Review for exam posted = Helps with arrays (on exam)
* New Review Session * Due next Thursday
= Saturday evening Spm! * Extra credit:
= Here in Phillips 101 = It will be worth 5 points
= Slides posted tomorrow * Can make more than 100

4/12/12 OO Design



The Challenge of Making Software

/** Simulate vignetting (corner darkening)

* characteristic of antique lenses. Darken ~ ©® We do a lot for you

* each pixel in the image by the factor = Classes made ahead of time
¥ (d / htD)*2 : : :

* where d is the distance from the pixel " Detailed spemﬁcatlons

*to the center of the image and hfD (for = You just “fill in blanks”

* half diagonal) is the distance from the e The “Real World”

* center of the image to the corners.
* The alpha component is not changed. = Vague specifications

J = Unknown # of classes

public void vignette() {

= Everything from scratch
int rows= currentIm.getRows(); verything frrom scratc

// FINISH ME * Where do you start?

4/12/12 OO Design 3



Software Patterns

e Pattern: reusable solution to a common problem
= Template, not a single program
= Tells you how to design your code

= Made by someone who ran into problem first
* In many cases, a pattern gives you the interface
= List of headers for the public methods

. _ . Just like
= Specification for these public methods TS (oIl

" Only thing missing is the implementation

4/12/12 OO Design 4



Example Pattern: I/O Streams

Challenge: want to get * From a file:
input from somewhere
= Are these cases different?

= Or do they have a pattern?

* From the keyboard:

4/12/12 OO Design



Example Pattern: I/O Streams

e InputStream: Read-only list of bytes (0..255)
= Like an array, but can only read once

* Once you read a byte, go to the next one

72 | 101 | 108 | 108 | 157 | 32 | 65 | 108 | 108

)

Read

* OutputStream: Like InputStream, but write-only

4/12/12 OO Design 6



Example Pattern: I/O Streams

public class InputStream { public class OutputStream {
/** Yields: next byte (0..255) /** Writes a byte to the stream
* in stream or -1 if empty */ * Pre:Dbisinrange 0..255 */

public int read() throws IOE{ public int write() throws IOE{

} }

/** Shuts the input stream /** Shuts the input stream
* down (close file, disconnect * down (close file, disconnect
* mnetwork, ete.) */ * network, etc.) */

public void close() throws IOE{ public void close() throws IOE{

} }
} }

4/12/12 OO Design 7



Example Pattern: I/O Streams

Challenge: want I/O stream for data other than bytes

e Text:
ABCDEFGHIJKLMN
OPQRSTUVWXYZA
abcdefghijklmnopgr
stuvwxyzaaeideli&
1234567890($£€.,!?) : | | |
e Images e General Objects
@105dc
x double
o Ve
Point2d() Point2d(double, double)
getX() getY()
setX(double) setY(double)

4/12/12




How Many Classes Do We Need?

4/12/12

* Source:
= Keyboard
= File
= Network
e Data Type:
= Text
= Images
= Sound
= Objects

OO Design

3x4 = 12 Classes!

Need 3 more every time
we add a new data type

Must be a better way!




Example Pattern: Decorators

public class Decorator {
private Object original;
public void method() {
doSomethingNew();

original.method();

New }
Functionality

igi riginal
R Decortor — ot -, Origina
Object Y Object

4/12/12 OO Design

10



Decorators and Java I/0

e Java I/O works this way.

= Start with basic Input/OutputStream
= Determined by source (keyboard, file, etc.)

* Add decorator for type (text, images, etc.)
* You did this in the lab on File I/O

FileInputStream input = new FileInputStream(“myfile.txt”);
BufferedReader reader = new BufferedReader(input);

// Read a line of text
String line = reader.readLine()

4/12/12 OO Design

11



Architecture Patterns

* Essentially same idea as software pattern
= Template showing how to organize code

= But does not contain any code itself

* Only difference 1s scope
= Software pattern: simple functionality
= Architecture pattern: complete application

* Large part of the job of a software architect
= Know the best patterns to use in each case

= Use these patterns to distribute work to your team

4/12/12 OO Design

12



Model-View-Controller Pattern

Controller Calls the
® Updates model in methods of
‘ response to events
® Updates view with \
model changes

4/12/12 OO Design 13



TemperatureConverter Example

* Model: (TemperatureModel.java)
= Stores one value: fahrenheit

= But the methods present two values

* View: (TemperatureView.java)
= Constructor creates GUI components

= Recieves user input but does not “do anything”

. . (TemperatureConverter.java)
= Main class: instantiates all of the objects

= “Communicates’ between model and view

4/12/12 OO Design

14



TemperatureConverter Example

O O O Temperature Converter

VleW ’ Farenheit | 45.30:‘ Centigrade 7.39 ’
Controller TemperatureConverter

@105dc

TemperatureModel

MO de 1 farenheit | 32.0 double

getFarenheit() setFarenheit(double)
getCentigrade()  setCentrigrade(double)

4/12/12 OO Design

15



Advantages of This Approach

View

Another

(R 2 =5 = b b xp up ap 2p b up 2b 2 2p 2p 2p 2 2p p 2p 2b 2 2p 2p 2p 2 2 p 2p 2p 3¢
+ 1| EERHEE SRR L LR ERT
F3EREREREEEERREERREEERREERRRLET
| SEEEEEEEEEEEEIIIIEEEE 3333333

PR R E R

e R R XX
R X R e
Tt 2 X R ea R Ert R ER DI
DR 2 2 2 R R CRENI ST
PR

R e
XX P EXXXXK S EHHK ot
.7.7.7vth,lXtttf\ttt.l,l,lt.

-

-
-

-
i
i
o |
U
4
o
J

16

OO Design

4/12/12



MYVC and Assignment 6

View

4/12/12

ImageGUI

Controller

ImageProcessor

OO Design

17



Beyond Model-View-Controller

* MVC i1s best pattern for offline programs
= Networked get more complex

* Client-Server
= Client runs on your computer

* Client connects to remoter server

e Three-Tier Applications
= Client-Server-Database Client(s)

T XXXl
= Standard for web applications Server(s)

* ... and many others
Database(s)

4/12/12 OO Design 18




You Can Even Mix and Match

4/12/12 OO Design 19



Software Patterns and Computer Science

e Patterns are part of Software Engineering
= At Cornell that 1s part of the CS department

= But also part of information science

* Very important in the “Systems” courses

= Courses focused on building big applications

= Examples: databases, operating systems, etc...
* Interested in systems? Take 2110, then 3410

e Also a big part of the game design courses

= Course 1s being renumbered CS 3

4/12/12

OO Design

15

) ( Software

\ Engineering

I,



