
Object Oriented Design	

Interlude 	

	

Announcements for This Lecture	

This Week	

•  Today is an Interlude	

  Nothing today is on exam	

  Another “Big Picture” talk	

  Relevant to Assignment 6	

•  Review for exam posted	

•  New Review Session	

  Saturday evening 5pm!	

  Here in Phillips 101	

  Slides posted tomorrow	

Assignments	

•  Assignment 5 almost done	

  Should be graded by tonight	

  Grades looking okay so far	

•  Keep on Assignment 6	

  Helps with arrays (on exam)	

  Due next Thursday	

•  Extra credit:	

  It will be worth 5 points	

  Can make more than 100	

4/12/12	

 2	

OO Design	

The Challenge of Making Software	

 /** Simulate vignetting (corner darkening) 	

 * characteristic of antique lenses. Darken 	

 * each pixel in the image by the factor	

 * (d / hfD)^2	

 * where d is the distance from the pixel 	

 * to the center of the image and hfD (for	

 * half diagonal) is the distance from the	

 * center of the image to the corners.	

 * The alpha component is not changed. 	

 */	

public void vignette() {	

 int rows= currentIm.getRows();	

 // FINISH ME 	

}	

•  We do a lot for you	

  Classes made ahead of time	

  Detailed specifications	

  You just “fill in blanks”	

•  The “Real World”	

  Vague specifications	

  Unknown # of classes	

  Everything from scratch	

•  Where do you start?	

4/12/12	

 3	

OO Design	

•  Pattern: reusable solution to a common problem	

  Template, not a single program	

  Tells you how to design your code	

 Made by someone who ran into problem first	

•  In many cases, a pattern gives you the interface	

  List of headers for the public methods	

  Specification for these public methods	

 Only thing missing is the implementation	

Software Patterns	

Just like	

this course!	

4/12/12	

 4	

OO Design	

Example Pattern: I/O Streams	

	

Challenge: want to get
input from somewhere	

  Are these cases different?	

  Or do they have a pattern?	

•  From a file:	

•  From the nework	

•  From the keyboard:	

4/12/12	

 5	

OO Design	

Example Pattern: I/O Streams	

•  InputStream: Read-only list of bytes (0..255)	

  Like an array, but can only read once	

 Once you read a byte, go to the next one	

•  OutputStream: Like InputStream, but write-only	

72	

 101	

 108	

 108	

 157	

 32	

 65	

 108	

 108	

 …	

Read	

4/12/12	

 6	

OO Design	

Example Pattern: I/O Streams	

public class InputStream {

 /** Yields: next byte (0..255)

 * in stream or -1 if empty */

 public int read() throws IOE{

 …

 }

 /** Shuts the input stream

 * down (close file, disconnect

 * network, etc.) */

 public void close() throws IOE{

 …

 }

}

public class OutputStream {

 /** Writes a byte to the stream

 * Pre: b is in range 0..255 */

 public int write() throws IOE{

 …

 }

 /** Shuts the input stream

 * down (close file, disconnect

 * network, etc.) */

 public void close() throws IOE{

 …

 }

}

4/12/12	

 7	

OO Design	

Example Pattern: I/O Streams	

	

Challenge: want I/O stream for data other than bytes	

•  Sound:	

•  General Objects	

@105dc	

x 0.0

y 0.0

getX()
setX(double)

Point2d	

double

double

getY()
setY(double)

Point2d() Point2d(double, double)

•  Text:	

•  Images	

4/12/12	

 8	

OO Design	

How Many Classes Do We Need?	

•  Source:	

 Keyboard	

  File	

 Network	

•  Data Type:	

  Text	

  Images	

  Sound	

 Objects	

3x4 = 12 Classes!	

Need 3 more every time
we add a new data type	

Must be a better way!	

4/12/12	

 9	

OO Design	

Object stored	

as a field	

New	

Functionality	

Example Pattern: Decorators	

public class Decorator {

 private Object original;

 public void method() {

 doSomethingNew();

 original.method();

 }

}

Original	

Object	

Decorator	

Object	

Request	

 Original	

Functionality	

4/12/12	

 10	

OO Design	

Decorators and Java I/O	

•  Java I/O works this way.	

  Start with basic Input/OutputStream	

  Determined by source (keyboard, file, etc.)	

  Add decorator for type (text, images, etc.)	

•  You did this in the lab on File I/O	

FileInputStream input = new FileInputStream(“myfile.txt”);

BufferedReader reader = new BufferedReader(input);

// Read a line of text

String line = reader.readLine()	

4/12/12	

 11	

OO Design	

Architecture Patterns	

•  Essentially same idea as software pattern	

  Template showing how to organize code	

  But does not contain any code itself	

•  Only difference is scope	

  Software pattern: simple functionality	

 Architecture pattern: complete application	

•  Large part of the job of a software architect	

 Know the best patterns to use in each case	

 Use these patterns to distribute work to your team	

4/12/12	

 12	

OO Design	

Model	

• 	

Defines and
	

manages the data	

• 	

Responds to the
	

controller requests	

View	

• 	

Displays model to
	

the player	

• 	

Provides interface
	

for the controller	

Controller	

• 	

Updates model in
	

response to events	

• 	

Updates view with
	

model changes	

	

Model-View-Controller Pattern	

Calls the
methods of	

4/12/12	

 13	

OO Design	

•  Model: (TemperatureModel.java)	

  Stores one value: fahrenheit	

  But the methods present two values	

•  View: (TemperatureView.java)	

  Constructor creates GUI components	

  Recieves user input but does not “do anything”	

•  Controller: (TemperatureConverter.java)	

 Main class: instantiates all of the objects	

  “Communicates” between model and view	

TemperatureConverter Example	

4/12/12	

 14	

OO Design	

View	

Model	

TemperatureConverter	

Controller	

TemperatureConverter Example	

@105dc	

farenheit

getCentigrade()

TemperatureModel	

double

setCentrigrade(double)
getFarenheit() setFarenheit(double)

32.0

4/12/12	

 15	

OO Design	

Advantages of This Approach	

View	

 Another View	

4/12/12	

 16	

OO Design	

MVC and Assignment 6	

ImageGUI	

ImageProcessor	

ImageArray	

Image	

ImagePanel	

ImageFrame	

View	

Controller	

Model	

4/12/12	

 17	

OO Design	

Beyond Model-View-Controller	

•  MVC is best pattern for offline programs	

 Networked get more complex	

•  Client-Server	

  Client runs on your computer	

  Client connects to remoter server	

•  Three-Tier Applications	

  Client-Server-Database	

  Standard for web applications	

•  … and many others	

Client(s)	

Server(s)	

Database(s)	

4/12/12	

 18	

OO Design	

You Can Even Mix and Match	

Client	

 Server	

Controller	

Model	

 View	

Controller	

Model	

4/12/12	

 19	

OO Design	

Software Patterns and Computer Science	

•  Patterns are part of Software Engineering	

 At Cornell that is part of the CS department	

  But also part of information science	

•  Very important in the “Systems” courses	

  Courses focused on building big applications	

  Examples: databases, operating systems, etc…	

  Interested in systems? Take 2110, then 3410	

•  Also a big part of the game design courses	

  Course is being renumbered CS 3152 	

4/12/12	

 20	

OO Design	

Software	

Engineering	

