
4/4/12	

1	

Announcements for Today	

Reading	

•  Sections 8.1 – 8.3	

•  PLive Lessons 7.5, 7.6	

Assignments	

•  A5 due tonight by Midnight	

  Will grade this weekend	

  Cannot give extensions	

•  A6 posted Tonight	

  Get started immediately!	

  Prelim is same week it is due	

•  Lab for this week & next	

  Made new lab at last minute	

  Original lab is next week	

  Will help with the prelim	

•  Prelim, April 17th 7:30-9:30	

  TODAY IS LAST MATERIAL	

  Review posted this weekend	

  Not the same as previous years 	

•  Conflict with Prelim time?	

  Submit to Prelim 2 Conflict

assignment on CMS	

  Do not submit if no conflict	

Horizontal Notation for Arrays	

Example of an assertion about an array b. It asserts that:	

1.  b[0..k–1] is sorted (i.e. its values are in ascending order)	

2.  Everything in b[0..k–1] is ≤ everything in b[k..b.length–1]	

Given the index h of the First element of a segment and���
the index k of the element that Follows the segment,���
the number of values in the segment is k – h.	

b[h .. k – 1] has k – h elements in it.	

b 	

0 h k	

h h+1	

(h+1) – h = 1	

b <= sorted >=	

0 k b.length	

Developing Algorithms on Arrays	

•  Specify the algorithm by giving its precondition and
postcondition as pictures.	

•  Draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition 	

  The invariant is true at the beginning and at the end	

•  The four loopy questions (memorize them)	

1.  How does loop start (how to make the invariant true)?	

2.  How does it stop (is the postcondition true)?	

3.  How does repetend make progress toward termination?	

4.  How does repetend keep the invariant true?	

Generalizing Pre- and Postconditions	

•  Dutch national flag: tri-color 	

  Array of 0..n-1 of red, white, blue "pixels"	

  Arrange to put reds first, then whites, then blues 	

? 	

0 n	

pre: b	

 reds whites blues 	

0 n	

post: b	

(values in 0..n-1 are unknown)	

inv: b reds whites ? blues	

0 j k l n	

Make the red, white, blue
sections initially empty: 	

•  Range i..i-1 has 0 elements	

•  Main reason for this trick	

Changing loop variables turns
invariant into postcondition.	

Generalizing Pre- and Postconditions	

•  Finding the minimum of an array. 	

•  Put negative values before nonnegative ones. 	

 ? and n >= 0 	

0 n 	

pre: b	

x is the min of this segment 	

0 n	

post: b	

x is min of this segment 	

0 j n	

inv: b	

 ?	

(values in 0..n ���
 are unknown)	

(values in j..n ���
 are unknown)	

 ? and n >= 0 	

0 n 	

pre: b	

< 0	

0 k n	

post: b	

(values in 0..n ���
 are unknown)	

(values in k..j-1 ���
 are unknown)	

>= 0	

0 k j n	

inv: b	

 ?	

 >= 0	

< 0	

pre: j = 0	

post: j = n+1	

pre: k = 0, ���
 j = n+1	

post: k = j	

Partition Algorithm	

•  Given an array b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

 <= x x ? >= x 	

 h i j k	

inv: b	

•  Agrees with precondition when h = i, j = k+1	

•  Agrees with postcondition when j = i+1 	

4/4/12	

2	

Linear Search	

v not here 	

 i	

h k	

?	

h k	

pre: b	

 v not here v ? 	

h i k 	

 post: b	

 b	

OR	

 v not here ? 	

h i k 	

 inv: b	

Linear Search	

/**	

Yields: index of first occurrence of c in b[h..]	

 * Precondition: c is in b[h..] */	

public static int findFirst(int c, int[] b, int h) {	

// Store in i the index of the first c in b[h..]	

int i= h;	

// inv: c is not in b[h..i–1]	

while (b[i] != c) {	

i= i + 1;	

}	

// post: b[i] == c and c is not in b[h..i-1]	

return i;	

}	

Analyzing the Loop	

1.  Does the initialization
make inv true?	

2.  Is post true when inv is
true and condition is false?	

3.  Does the repetend make
progress?	

4.  Does the repetend keep
inv true?	

b
 c is not here	

 c

h
 i
 n

result (post)	

b
 c is not here	

h
 i
 n

invariant (inv)	

c is in here	

b[i] == c

Binary Search	

• Vague: Look for v in sorted array segment b[h..k].	

• Better:	

 Precondition: b[h..k] is sorted (in ascending order). 	

 Postcondition: b[h..i] <= v and v < b[i+1..k] 	

	

• Below, the array is in non-descending order:	

? 	

h k	

pre: b	

<= v	

h i k	

post: b	

Called binary search
because each iteration
of the loop cuts the
array segment still to
be processed in half	

> v	

< v	

h i j k	

inv: b	

 > v	

?	

Loaded Dice	

•  Array p of length n represents n-sided die	

  Contents of p sum to 1	

  p[k] is probability die rolls the number k	

•  Goal: Want to “roll the die”	

  Generate random number r between 0 and 1	

  Pick p[i] such that p[i-1] < r ≤ p[i] 	

0.1	

 0.1	

 0.1	

 0.1	

 0.3	

 0.3	

1	

 2	

 3	

 4	

 5	

 6	

weighted d6, favoring 5, 6	

0.1	

 0.1	

 0.1	

 0.1	

 0.3	

 0.3	

0.1	

 0.2	

 0.3	

 0.4	

 0.7	

 1.0	

Loaded Dice	

•  Want: Value i such that p[i-1] < r <= [i]	

•  Same as precondition if i = 0	

•  Postcondition is invariant + false loop condition	

?	

0 n	

pre: b	

r > sum	

0 i n 	

 post: b	

 r <= sum	

r > sum	

0 i n 	

 inv: b	

 ?	

inv	

1	

0	

p[0]
 p[1]
 p[i]

…
 …

p[n–1]

r is not here	

 pEnd

Loaded Dice	

/** 	

 Yields: a random int in 0..p.length-1; i is returned with probability p[i].	

 * Precondition: the entries of p are positive and sum to at least 1. */	

public static int roll(double[] p) {	

 double r= Math.random(); // r in [0,1)	

 // Think of interval [0,1] as divided into segments of size p[i]	

 // Store into i the segment number in which r falls.	

 int i= 0; double pEnd= p[0];	

 // inv: r >= sum of p[0] .. p[i–1]; pEnd = sum of p[0] .. p[i] 	

 while (r >= pEnd) {	

 pEnd= pEnd + p[i+1];	

 i= i + 1;	

 }	

 // post: sum of p[0] .. p[i–1] <= r < sum of p[0] .. p[i]	

 return i;	

}	

 r < pEnd

post	

r

1	

0	

p[0]
 p[1]
 p[i]

…
 …

p[n–1]

Analyzing the Loop	

1.  Does the initialization
make inv true?	

2.  Is post true when inv is
true and condition is false?	

3.  Does the repetend make
progress?	

4.  Does the repetend keep
inv true?	

