Announcements for Today

Reading Assignments

Horizontal Notation for Arrays

* Sections 8.1 - 8.3 e A5 due tonight by Midnight
e PLive Lessons 7.5,7.6
¢ Prelim, April 17t 7:30-9:30

« TODAY IS LAST MATERIAL | ® A0 posted Tonight
= Get started immediately!

= Prelim is same week it is due

= Will grade this weekend

= Cannot give extensions

= Review posted this weekend
= Not the same as previous years
¢ Conflict with Prelim time? | ° Lab for this week & next

= Submit to Prelim 2 Conflict
assignment on CMS

= Made new lab at last minute

= Original lab is next week
= Do not submit if no conflict

= Will help with the prelim

0 k b.length
b‘ <= sorted ‘ >=

Example of an assertion about an array b. It asserts that:
1. b[0.k-1] is sorted (i.e. its values are in ascending order)

2. Everything in b[0.k—1] is =< everything in b[k..b.length—1]

0 h k
b | |

Given the index h of the First element of a segment and h hel
the index k of the element that Follows the segment,
the number of values in the segment is k — h.

blh ..k — 1] has k — h elements in it. (h+l)-h=1

Developing Algorithms on Arrays

* Specify the algorithm by giving its precondition and
postcondition as pictures.
* Draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition
= The invariant is true at the beginning and at the end
* The four loopy questions (memorize them)
How does loop start (how to make the invariant true)?
How does it stop (is the postcondition true)?

O S

How does repetend make progress toward termination?

bl

How does repetend keep the invariant true?

Generalizing Pre- and Postconditions

* Dutch national flag: tri-color
= Array of 0..n-1 of red, white, blue "pixels"
= Arrange to put reds first, then whites, then blues

0 n
pre: b ‘ ? ‘ (values in 0..n-1 are unknown)

0 n

post: b‘ reds ‘ whites ‘ blues ‘ Make the red, _blue
sections initially empty:

i k 1 n | * Rangei.i-1 has 0 elements
inv: b ‘ reds ‘ whites ‘ ? . blues ‘ * Main reason for this trick

Changing loop variables turns
invariant into postcondition.

Generalizing Pre- and Postconditions

 Finding the minimum of an array.

0 n
re: b ‘ 9 ‘ d -0 (values in 0..n
pre: . and n>= are unknown)
0 n
post: b ‘ X is the min of this ‘
0 n 2 s
T I 3 pre: j=0 (values in j.n
inv: b ‘ X is min of this ? ‘ post: j=n+1 J ,rc unknown)

Partition Algorithm

* Put negative values before nonnegative ones.

(values in k. j-1
are unknown)

0 n (values in 0
.) B values in 0..n
pre: b ‘ ‘ and n>=0 are unknown)
0 k n
post: b ‘ <0 . >=0 ‘
0 k i ‘"

inv: b‘ <0 ‘ ? ‘ >=0

¢ Given an array b[h. k] with some value x in b[h]:
h k
pre: b ‘ X ‘ 9 ‘

* Swap elements of b[h.k] and store in j to truthify post:

h i+l k
post: b ‘ <=x .x ‘ >=x ‘
h i] k
inv: b ‘ <=x lx ‘ ? l >=X ‘

* Agrees with precondition when h =1, j =k+1
¢ Agrees with postcondition when j = i+1

4/4/12

Linear Search

Linear Search

h k

pre: b ‘ 2 ‘
h i k

post: b ‘ v not here ‘ v ‘ ? ‘
OR i
h k

b ‘ v not here ‘
h i k

inv: b ‘ v not here ? ‘

/**Yields: index of first occurrence of ¢ in b[h..]
* Precondition: ¢ is in b[h..] */
public static int findFirst(int ¢, int[] b, int h) { 1. Does the initialization
/I Store in i the index of the first ¢ in b[h..] make inv true?
int i=h;

Analyzing the Loop

. X . . 2. Is post true when inv is
/1inv: ¢ is not in bfh.i-1] true and condition is false?

i i 1=
while (b[i] = ¢) { 3. Does the repetend make

=it progress?
} 4. Does the repetend keep
// post: b[i] == ¢ and c is not in b[h..i-1] inv true?
return i;
}
h i n h i n
b‘ ‘ ¢ is not here ‘0‘ b‘ ‘0 is not here ‘ ¢ is in here

|
result (post) \b['] j invariant (inv)
1j==¢

Binary Search

Loaded Dice

* Vague: Look for v in sorted array segment b[h..k].
* Better:

= Precondition: b[h.k] is sorted (in ascending order).

= Postcondition: b[h..i] <=v and v <b[i+1.k]

* Below, the array is in non-descending order:

h k
pre: b‘ 9 ‘
R Called binary search
h i k . .
because each iteration

post: b‘ <=V >V of the loop cuts the

h i j k array segment still to
inv: b <v [2] >v | |be processed in half

* Array p of length n represents n-sided die
= Contents of p sum to 1
= p[k] is probability die rolls the number k

I 2 3 4 5 6
[o1 [o1Jo1]or]o3] 03] weightedds, favorings.6

* Goal: Want to “roll the die”
= Generate random number r between 0 and 1
= Pick p[i] such that p[i-1] <r=<pl[i]

[o1 o1 Jo1Jo1]o3]o03]
01 | 02]0304]07]10

4/4/12

Loaded Dice

e Want: Value i such that p[i-1] < r <= [i]

0 n
pre: b ‘ ?

0 i n
post: b ‘ r>sum ‘ r <= sum ‘

0 i n
inv: b ‘ r>sum ‘ ? ‘

* Same as precondition if i =0
e Postcondition is invariant + false loop condition

Loaded Dice

* Yields: a random int in 0..p.Jength-1; i is returned with probability p[i]

Precondition: the entries of p are positive and sum to at least 1. */
public static int roll(double[] p) {
double r= Math.random(); // r in [0.1)
/ Think of interval [0.1] as divided into segments of size p[i] 1, Does the initialization
make inv true?

Analyzing the Loop

/ Store into i the segment number in which r falls.
inti=0; double pEnd= p[0];
//iny: t>= sum of p[0] .. pli~1]; pEnd = sum of p[0] .. pli]
while (r>=pEnd) {
pEnd= pEnd + p[i+1]:

2. Is post true when inv is
true and condition is false?

3. Does the repetend make

=i+l progress?

}

/ post: sum of p[0] .. pli-1] <= r < sum of p[0] .. p[i] 4. Does the repetend keep

return i End inv true?

T < pEng

) / \

I is not here pEnd inv T post
0 - — o——t-- e —

pl0] p(1] pli] pln-1] pl0] p[1] pli] pin-1]

