
Arrays	

Lecture 18 	

	

4/3/12	

 Arrays	

 2	

Wednesday, April 4, 2012	

4-6 PM in Duffield Atrium	

Announcements for Today	

Reading	

•  Sections 8.1 – 8.3	

•  PLive Lessons 7.5, 7.6	

Assignments	

•  A5 is due Thursday night	

  Keep reading Piazza	

  Should have worked ���

on a method a day	

  Cannot give extensions	

•  A6 posted on Thursday	

  Get started immediately!	

  Prelim is same week it is due	

  If you get started right away,���

you will not have problems	

4/3/12	

 Arrays	

 3	

•  Prelim, April 17th 7:30-9:30	

  Material up to next class	

  Review posted this weekend	

  Not the same as previous years 	

•  Conflict with Prelim time?	

  Submit to Prelim 2 Conflict

assignment on CMS	

  Do not submit if no conflict	

Arrays	

•  Array: an object that holds a fixed
number of values of the same type.	

•  Type of an array is written:	

<type>[] (e.g. int[])	

•  Declare a variable x that holds the
name of an array of ints:	

<type> <name>; (e.g., int[] x;)

•  Elements of array x are numbered:	

0, 1, 2, …, n – 1	

•  To refer to an element of an array:	

<var>[<index>] (e.g. x[3])

 @4e0a1	

x
 int[]

x[0]

x[1]

x[2]

x[3]

@4e0a1	

 5	

 7	

 4	

 -2	

This array contains 4 	

values of type int	

4/3/12	

 4	

Arrays	

Arrays	

•  Array length is a field of the object	

x.length [not x.length()]

•  The length field is final: it never
changes after the array is created 	

•  Length is not part of the array type	

  An int[] variable can be hold arrays ���

of different lengths at different times	

•  Declaring x does not create array 	

  As an object it starts out null	

  Need a special new-expression:	

new <type>[<length>] �
(e.g. x = new int[3];)

0

1

2

3

@4e0a1	

 5	

 7	

 4	

 -2	

length 4

0

1

2

@13fc8	

 5	

 7	

 4	

 @4e0a1	

x
 int[]
 @13fc8	

4/3/12	

 5	

Arrays	

Create array object of
length 4; put name in x	

Create a variable named
x to hold an int[] value	

Assign 5 to element 2���
and –4 to element 0	

Assign –8 to x[3]���
and 6 to x[1]	

Overview of Array Syntax	

•  int[] x;	

•  x = new int[4];	

•  x[2] = 5;	

•  x[0] = –4;	

•  int k = 3;	

•  x[k] = 2 * x[0];	

•  x[k–2] = 6;	

0

1

2

3

@4e0a1	

 0	

 0	

 0	

 0	

 @4e0a1	

x
 int[]

 3	

k
 int

-4	

6	

5	

-8	

✗	

✗	

✗	

✗	

4/3/12	

 6	

Arrays	

Arrays vs. Vectors vs. Strings 	

•  Declaration	

int[] a;

(contains ints)	

•  Creation	

a = new int[n];

(size fixed forever)	

•  Reference	

x = a[i];	

•  Change	

a[i] = x;

•  Declaration	

String s;

(contains chars)	

•  Creation	

s = “foo”;

(contents fixed forever)	

•  Reference	

c = s.charAt(i);	

•  Cannot Change	

4/3/12	

 Arrays	

 7	

•  Declaration	

Vector<Integer> v;

(contains Integers)	

•  Creation	

v= new Vector<Integer>();

(can be resized at will)	

•  Reference	

x= v.get(i);

•  Change

v.set(i, x);

Variables a[0], a[1], … are
at successive locations in
memory. Element type can
be class or primitive type.	

Storage layout unspecified
(but really, it is an array).
Element type can only be ���
a class type.	

Storage layout unspecified
(but really, it is an array)
Element type is always
char.	

Array Initializers	

•  Initializing a newly created array:	

  int[] c= new int[5];

  c[0]= 5; c[1]= 4; c[2]= 7; c[3]= 6; c[4]= 5;

•  Instead, use an array initializer:	

  new int[] { 5, 4, 7, 6, 5 }

•  In a declaration, short form is available:	

  int[] c;�

c= new int[] { 5, 4, 7, 6, 5 };

  int[] c= new int[] { 5, 4, 7, 6, 5 };

  int[] c= { 5, 4, 7, 6, 5 };

4/3/12	

 Arrays	

0

1

2

3

@4e0a1	

 5	

 4	

 7	

 6	

x
 int[]
 @4e0a1	

4
 5	

create array of 5 ints initialized with default (0)	

assign new values to elements	

create array of 5 ints and initialize all elements	

no size goes here (implied ���
by length of initializer list)	

types must agree���
with array’s type	

all three do the	

 same thing	

8	

Array Initialization Example	

public class ArrayDemo {

 public static final String[] months= �

 new String[]{"January","February","March","April","May", �
 "June","July","August","September","October”,�
 "November","December"};

/**
Yields: the month name, given its number m

 * Precondition: 1 <= m <= 12 */

public static String theMonth(int m) {

return months[m–1];

}

}

Variable months is:	

static: object assigned is created only once���
public: can be seen outside class ArrayDemo ���
final: it cannot be changed once initialized	

e.g. ArrayDemo.theMonth(4)
returns months[3], or "April".	

swap:	

 ArrayDemo	

b	

 @4e0a1	

 h	

 3	

 k	

 4	

1	

Procedure: Swap	

public class ArrayDemo {

 /** Procedure swaps b[h] and b[k] in b */

 public static void swap (int[] b, int h, int k) {

 int temp= b[h];

 b[h]= b[k];

 b[k]= temp;

 }

}

…	

swap(c, 3, 4);	

Swaps b[h] and b[k],
because parameter b

contains name of array.	

0

1

2

3

@4e0a1	

 5	

 4	

 7	

 6	

c
 int[]
 @4e0a1	

4
 5	

temp	

 6	

2	

3	

4	

5	

✗	

6	

✗	

4/3/12	

 10	

Arrays	

Array Algorithm: Linear Search	

/**	

Yields: index of first occurrence of c in b[h..]	

 * Precondition: c is in b[h..] */	

public static int findFirst(int c, int[] b, int h) {	

// Store in i the index of the first c in b[h..]	

int i= h;	

// inv: c is not in b[h..i–1]	

while (b[i] != c) {	

i= i + 1;	

}	

// post: b[i] == c and c is not in b[h..i-1]	

return i;	

}	

Analyzing the Loop	

1.  Does the initialization
make inv true?	

2.  Is post true when inv is
true and condition is false?	

3.  Does the repetend make
progress?	

4.  Does the repetend keep
inv true?	

b
 c is not here	

 c

h
 i
 n

result (post)	

b
 c is not here	

h
 i
 n

invariant (inv)	

c is in here	

b[i] == c

inv	

1	

0	

p[0]
 p[1]
 p[i]

…
 …

p[n–1]

r is not here	

 pEnd

Array Algorithm: Loaded Dice	

/** 	

 Yields: a random int in 0..p.length-1; i is returned with probability p[i].	

 * Precondition: the entries of p are positive and sum to at least 1. */	

public static int roll(double[] p) {	

 double r= Math.random(); // r in [0,1)	

 // Think of interval [0,1] as divided into segments of size p[i]	

 // Store into i the segment number in which r falls.	

 int i= 0; double pEnd= p[0];	

 // inv: r >= sum of p[0] .. p[i–1]; pEnd = sum of p[0] .. p[i] 	

 while (r >= pEnd) {	

 pEnd= pEnd + p[i+1];	

 i= i + 1;	

 }	

 // post: sum of p[0] .. p[i–1] <= r < sum of p[0] .. p[i]	

 return i;	

}	

 r < pEnd

post	

r

1	

0	

p[0]
 p[1]
 p[i]

…
 …

p[n–1]

Analyzing the Loop	

1.  Does the initialization
make inv true?	

2.  Is post true when inv is
true and condition is false?	

3.  Does the repetend make
progress?	

4.  Does the repetend keep
inv true?	

