CS1110 30 March 2012. while-loops
Haikus (5-7-5) seen on Japanese Reading: today: Ch. 7 and
computer monitors ProgramLive sections.
Yesterday it worked. Serious error.
Today it is not working. All shortcuts have disappeared.
Windows is like that. Screen. Mind. Both are blank.
A crash reduces The Web site you seek
Your expensive computer Cannot be located, but
To a simple stone. Countless more exist.
Three things are certain: Chaos reigns within.
Death, taxes, and lost data. Reflect, repent, and reboot.
Guess which has occurred? Order shall return.

Beyond ranges of integers: the while loop

while (<condition>) { <condition>: a boolean expression

sequence of declarations <repetend>: sequence of statements

and statements

}

In comparison with for-loops: a broader notion of “still stuff to
do” (not tied to integer ranges), but we must ensure that the
condition becomes false (since there’s no explicit increment).

Canonical while loops

// Process b..c // Process b..c
for (int k= b; k <= c; k=k+1) { int k=b;
Process k; while (k <=c¢) {
}7 Process k;
scope of k: the loop. k=k+1;
k can’ t be used after }
the loop

/I Process b..c
intk;
for (k= b; k <= c; k=k+1) {
Process k;
} scope of k: from its declaration to end
— of block in which declaration occurs. k
can be used after the loop.

// Precondition: 1 <=n

/I Set s to the largest power of 2 that is at most n.
s=1;
// Keep this true: s is a power of 2 and
1 s<=n

while (2 *s <= n) {
s=2%s; // Make progress toward termination
/I and keep assertion true

}

/I R: s is a power of 2 and s <=n and 2*s > n

Example:n=1. 0= 1but2!= 2.Sosetsto 1.
Example: n=31. 2% = 16 but 2% = 32. So set s to 16.

Here’s one // process a sequence of input not of fixed size
way to use <initialization>;

the while while (<still input left>) {

loop: Process next item of input;

make ready for next item of input;

}

// Set n to number of lines in file that have “/”” in them.

String s= first line of file (null if none);

int n=0;
while (s !=null) { You will learn how to

if (s.contains(*/”)) read/write files on

n=n+l; _ your hard drive in a
s=next line of file (null if none); oy el

}

Understanding assertions about lists
012345678

vVIXYZX ACZZ Z This is a list of Characters

An assertion about v and

0 3 k 8 k. It is true because chars
v =c] alZ's |k E of v[0..3] are greater than
‘C’ and chars of v[6..8]
are ‘Z’s.

0 3 k 8
v sc 7] azs] «[5] This is:
T\
0 " 3 A. true
vlee T azs] «[6]€p Fane
C. Idon’t know

0 k 8
=W A 11z k
ow AT azs] « [7] (,

Set t to number of times the first S t
char appears at beginning of s. “bbbcgbb” 3
Precondition: s not empty “$b$$$” 1
= 1: “hh” 2

while (t < s.length() &&
s.charAt[t] == s.charAt[t-1]) { Question: how can
t=t+1; we know that this
} works —without
having to execute it
//{RlandR2} ie.the postcondition OM several cases?

0 t s.length

R1: ‘ these are all the same

R2: either t = s.length or s[t] !=s[t-1]

Set t to number of times the first S t

char appears at beginning of s. “bbbcgbb” 3

Precondition: s not empty “$b$$$” 1

= 1 “hh” 2

// invariant: R1 Tnvariant will be

while (t < s.length() && true before and
s.charAt[t] == s.charAt[t-1]) { after each iteration

t=t+1;

1. Initialization right?
Condition right?
. Repetend keep
0 t s.length invariant true?
4. Repetend make
progress toward
R2: either t = s.length or s[t] != s[t-1] termination?

}/ {Rl andR2 } i..the postcondition

R1: ‘all the same ‘

Linear search. Character c is in String s. Find its first position.

/I Store in k to truthify diagram R Idea: Start at beginning of s,
looking for c; stop when found.
k=0; How to express as an invariant?

// invariant: See diagram P, below .
1. How does it start? ((how)

. . . o
while (s.charAtk) '=¢) { does init. make inv true?)
k=k+1; 2. thn does it stop? (Fl:om
the invariant and the falsity of
) loop condition, deduce that

result holds.)

3. (How) does it make

0 k s length() progress toward termination?

0 K s length() 4. How does repetend keep

invariant true?
L Py
Ris ¢ not here 9

The while loop: 4 loopy questions. Allows us to focus on one
thing at a time and thus separate our concerns.

// Set ¢ to the number of ‘e’ s in String s.

int n=s.length(); 1. How does it start? ((how)
k=0: c=0: does init. make inv true?)
// inv:c=#.of ‘e’ sins[0.k-1 . N
e of ‘e'sinsf] 2. When does it stop? (From
while (k <n) { the invariant and the falsity of
if (s.charAt(k) == ‘¢’) loop condition, deduce that
result holds.)

c=c+1;
k= k+ 1: 3. (How) does it make
: progress toward termination?
¥
// ¢ =number of ‘¢’ s in s[0..n-1] 4. How does repetend keep

invariant true?

Suppose we are thinking of The four loopy questions

this while loop: Second box helps us develop four loopy

mlt.lallzauon; questions for developing or understanding a
while (B) { loop:

repetend
¥ 1. How does loop start? Initialization

must truthify invariant P.

We add the postcondition and

also show where the invariant 2. When does loop stop?

must be true: Atend, P and !B are true, and these must

initialization; imply R. Find !B that satisfies

/ invariant: P P&& !B => R.

while (B) { 3. Make progress toward termination?
//{ Pand B} Put something in repetend to ensure this.
repetend
(P} 4. How to keep invariant true? Put

) something in repetend to ensure this.

/I {Pand B}

// { ResultR } 1

Roach infestation

/*#* = number of weeks it takes roaches to fill the apartment --see p 244 of text*/
public static int roaches() {

double roachVol= .001; // Space one roach takes

double aptVol= 20%20%#8; // Apartment volume

double growthRate= 1.25; // Population growth rate per week

intw= 0 // number of weeks
int pop=100; // roach population after w weeks

// inv: pop = roach population after w weeks AND
/! before week w, volume of roaches < aptVol
while (aptVol > pop * roachVol) {

pop= (int) (pop *(1 + growthRate));

w=w+ 1;

/I Apartment is filled, for the first time, at week w.
return w;

} 12

