Welcome Back from Spring Break

3/28/12

Today’s Material Assignments

Grisley Snowflakes

e All of Chapter 7
= Continuing loops discussion
= Will conclude Thursday

¢ Today’s Lab: For Loops

= Requires that you remember
the syntax from before break

* Assignment A4 now graded
= Completion Time:
¢ Mean 6.7 hrs; Median 6 hrs
¢ Max: 30 hrs; Min: 1 hr
= Grades:
* Mean 95.1, Median 100
= Also uses some of today’s ° Assignment A5 posted
material for problem solving = Due week from Thurs

e Class is getting easier... = Note the choice of problems

* Given (as shown):
= Lengths
= Point (x,y) 8
* Find: o o

= Coordinates of
all red points

* Draw:
s/3

= Snowflakes of one
less depth and
size s/3 at those points
s/3 s/3

(xy) o
S/

/3

Today’s Terminology

* assertion: true-false statement placed in a program to
assert that it is true at that point
= Can either be a comment, or a special Java command
» precondition: assertion placed before a statement
= Same idea as method precondition, but more general
e postcondition: assertion placed after a statement
¢ loop invariant: assertion supposed to be true before
and after each iteration of the loop
= Distinct from class (field) invariant
* iteration of a loop: one execution of its repetend

Review: Assert Statements

assert <boolean>; // Creates Exception if <boolean> false
assert <boolean> : <String>; / As above, but displays <String>

Comment form
of the assertion

* Can write and forget

= Only used if debugging
turned on in Java

worker’s last name to n
* (l’recundiliun: n cannot be null)/
public void setName(String n) {

Iname = n;

= QOtherwise, Java treats it
like a comment

Language support
for an assertion

* Code defensively! }

Assertions versus Asserts

* Assertions prevent bugs /I x is the sum of 1..n
= Help you keep track of

what you are doing

Comment form
of the assertion.

e Also track down bugs

= Make it easier to check
belief/code mismatches

¢ Do not confuse w/ asserts
= All asserts are assertions

= But reverse is not true

= Cannot always convert a
comment to an assert

Preconditions & Postconditions

n

precondition 12345678
/I x =sumof I..n-1 x contains the sum of these (6)
X=X+0n;
n=n+1;
// x = sumof 1.n-1 n
postcondition 12345678

« Precondition: assertion x contains the sum of these (10)

placed before a segment Meaning

¢ Postcondition: assertion
placed after a segment

If precondition is true, then
postcondition will be true




Invariants: Assertions That Do Not Change

3/28/12

* Loop Invariant: an assertion that is true before and
after each iteration (execution of repetend)

for [i=2]
for (inti=2;i<=5;i=i+1) { i

x =x+i*i;

// invariant

}

/I x = sum of squares of 2..5

Invariant:
x = sum of squares of 2..i-1

in terms of the range of integers

that have been processed so far The loop processes the range 2..5

Invariants: Assertions That Do Not Change

/I Inv: x = sum of squares of 2..i-1

x=0; x NX KB X 54
for (inti=2;i<=5:i=i+1){ P XXX X X6
X =X +1i*i;

s i=2;

/I Post: x = sum of squares of 2..5

Integers that have
been processed: 2, 3, 4, 5

Range 2..i-1: 2.5

Invariant was always true just
before test of loop condition. So
it’s true when loop terminates

The loop processes the range 2..5

Designing For-Loops

// Process integers in a..b Command to do something
//'inv: the integers in a..k-1 have been processed
for (intk=a; k<=b; k=k+1){

Process integer k;

}

// post: the integers in a..b have been processed ~Equivalent postcondition

invariant
Process k

invariant

Methodology for Making a For-Loop

Recognize that a range of integers b..c has to be processed

W -

‘Write the command and equivalent postcondition
Write the basic part of the for-loop

4. Write loop invariant

5. Figure out any initialization

6. Implement the repetend (Process k)

/I Process b..c
Initialize variables (if necessary) to make invariant true
// Invariant: range b..k-1 has been processed
for (int k=b; k <=c; k=k+1) {
/I Process k
}

// Postcondition: range b..c has b

Finding an Invariant

Command to do something

// Store in b the value of : “no int in 211—] divides n”
b = true;
// invariant: b = no int in 2. k-1 divides n
for intk=2;k<n; k=k+1) {
// Process k;
if (n%k == 0) b = false;
}

//'b="noint in 2..n-1 divides n”
T Equivalent postcondition

What is the invariant? 123 ...kl kk+l..n




