Lecture 14

Exceptions

Announcements for This Lecture

Prelim Assignments

e Generally grades are good * A4 due Thursday

= Mean: 80, Median 84 = Do not wait until last minute
= Similar to last semester = Remember to report your
= 62 is (probably) C- and below time in the comments!
e In Upson 360 by Thursday = Graded when you get back
" Check that grade is in CMS! e A5 posted Thursday
o = Have 1.5 weeks after
Readlng TOday Spring Break to do it

= Welcome, but not expected,

* Chapter 10 (in entirety) to do it over the break

3/13/12 Exceptions 2

Types of Errors in Java

Syntactic Errors

Runtime errors

e Can check at compile time

e Bad use of “grammar”

 Examples:

= Lack of semicolon

= Unknown method or variable

= Use of method not in the

3/13/12

apparent type of variable

Exceptions

Can only check at run time

Generally have to do with
contents (not type) of variable

Examples:
= Variable unexpectedly null
= Bad downward casts

= Method call that violates the
parameter preconditions

Exceptional Circumstances

/** Yields: the decimal number represented by s. */
int parselnt(String s) { ... }
e ...but what if s is “bubble gum”?

/** Yields: the decimal number represented by s, or —1
* if s does not contain a decimal number. */
e ...but whatif sis “-17?

/** Yields: the decimal number represented by s
* Precondition: s contains a decimal number. */
e ...but what if s might not, sometimes?

* Somehow, we have to be able to deal with the unexpected case

3/13/12 Exceptions

Dealing with Exceptional Circumstances

/** Yields: the decimal number * How to read a number from a file
* pepresented by s. (in 14 easy steps):
* Pre: s contains a number. */ Open the file

If the file doesn’t exist, ...

If there was a disk error, ...

Read a line from the file.

If the file was emptys, ...

If there was a disk error, ...
Convert string to a number.

If the string is not a number, ...

9. If we have run out of memorys, ...

int parselnt(String s) { ... }

/** Yields: “s contains a number.” */
boolean parseableAsInt(String s) { ... }

e Now we have to write:
if (parseableAsInt(someString)) {

O ONWUnN K WIN —

i = parselnt(someString); 16. Close the file.
} else { 11. If there was a disk error, ...
// do something about the error 12. If t Common Outcome

) 13. If't
14. Ift Weary programmers write

code that ignores errors.
3/13/12 Exceptions
There has to be a better way!

Exception Handling

/** Parse s as a signed decimal integer.

* Yields: the integer parsed

* Throws: NumberFormatException is s not a number */
public static int parselnt(String s) ...

* What happens when parselnt finds an error?
= Does not know what caused the error
= Cannot do anything intelligent about it.
= “throws the exception” to the calling method

* The normal execution sequence stops!

3/13/12 Exceptions

Recovering from Exceptions

* try-catch blocks allow us to recover from errors
* Do the code that is the try-block

= Once an exception occurs, jump to the catch

* Example:
might throw a NumberFormatException
try { /
1= Integer.parselnt(someString); tells Java to handle N.F.E.s here

System.out.printin(“The number is: ” + i);
} catch (NumberFormatException nfe) {
System.out.printin(*Hey! That is not a number!”)
} ™~
executes if the exception happens

3/13/12 Exceptions 7

Exceptions in Java

e Exceptions are instances of class Throwable
e This allows us to organized them in a hierarchy

@105dc
Throwable
“/ by zero” problems you Throwable problems you
____________________________ might want probably can’t
Throwable() Throwable(String) to deal with / \ fix anyway
etMessage
5 ge Exception Error J
Exception 7\
Exception() Exception(String) RuntimeException
RuntimeException f
Runtime...() Run...(String) ArithmeticException
ArithmeticException

Exceptions

Arith...() Arith...(String)

Creating Exceptions

public static void foo() { public static void foo() {
intx=865/0; throw new
Exception(“I threw it”);
})
Java creates Exception You create Exception
for you automatically manually by throwing it

3/13/12 Exceptions 9

Why So Many Exceptions?

public static int foo() { e What is the value foo()?
int x =0;

bry { A

throw new RuntimeException();

X =2&;

o value. It stops!

X =9 - T don’t know

B
C
} catch (RuntimeException e) { D
E

}

return Xx;

3/13/12 Exceptions 10

Why So Many Exceptions?

public static int foo() { e What is the value foo()?
int x =0;

bry { A

throw new RuntimeException();

X =2&;

o value. It stops!

X =9 - T don’t know

B
C
} catch (Exception e) { D
E

}

return Xx;

3/13/12 Exceptions 11

Why So Many Exceptions?

public static int foo() { e What is the value foo()?
int x =0;

try {
throw new RuntimeException();

X =2&;

} catch (ArithmeticException e) {

o value. It stops!
X =3

I don’t know
}

A
B:
C:
D
E:
return Xx;
) < Java uses real type

to match Exceptions

3/13/12 Exceptions

Exceptions and the Call Stack

e Call: 02 /** Illustrate exception handling */
Ex.first(); 03 public class Ex {
04 public static void first() {
. Output: 05 second();
ArithmeticException: / by zero 83)
at Ex.third(Ex.java:13) . o
0 A(Ex o 08 public static void second() {
at Ex.second(Ex.java:9) 09 third():
at Ex.first(Ex java:d) 0)
11
@4delal 12 public static void third() {
ArithmeticException 13 intx=5/0;
14 }
“/ by zero”
15}

3/13/12 Exceptions 13

Exceptions and the Call Stack

e Call: 02 /** Illustrate exception handling */
Ex.first(); 03 public class Ex {
04 public static void first() {
. Output: 05 second();
ArithmeticException: I threw it 83)
at Ex.third(Ex.java:13) . o
0 A(Ex o 08 public static void second() {
at Ex.second(Ex.java:9) 09 third():
at Ex.first(Ex java:d) 0)
11
@4delal 12 public static void third() {
ArithmeticException 13 throw new ArithmeticException (“I threw it”);
. 14 }
“I threw it”
15}

3/13/12 Exceptions 14

Creating Your Own Exceptions

/** An instance is an exception */ This is all you need
public class OurException extends Exception { = No extra fields
X C

/** Constructor: an instance with message m*/ * No extra methods

public OurException(String m) { = Just the constructors

super(m);

/** Constructor: an instance with no message */
public OurException() {
super();

}

3/13/12 Exceptions 15

Exception Hierarchy

Throwable

problems you
might want
to deal with

Exception

FileNotFoundE. /

EndOfFileE.

UnsupportedAudioFileE.
... (all others) ...

checked
exceptions

probably cannot
f \ deal with anyway
Error 4/

problems you

7NN

IOError AssertionError

problems you can prevent

RuntimeException <= | by coding properly

IndexOutOfBoundsE.

ArithmeticE.

ClassCastE.

unchecked
exceptions

throws and Checked Exceptions

e Call: 02 /** Illustrate exception handling */ Will not
Ex.first): 03 public class Ex { compile yet!
04 public static void first() throws OurException {
« OQutput: 05 second();
OurException: Whoa! 06)
at Ex.third(Ex.java:13) V7 , o ,
. 08 public static void second() throws OurException {
at Ex.second(Ex.java:9) 09 third():
at Ex.first(Ex.java:5) 0)
11
throws clauses are required h 12 public static void third() throws OurException {
because OurException, 13 throw new OurException(“Whoal!”);
unlike ArithmeticException, 14 }

s a checked exception.” D 15)

3/13/12 Exceptions 17

throws and Checked Exceptions

public class Ex {
public static void first() {

try {
second();

} cateh (OurException ae) {
System.out.println(“Caught it: ” + ae);
}

System.out.printin(“Procedure first done.”);

}

public static void second() throws OurException {
third();

}
public static void third() throws OurException {
throw new OurException(“an error”);

Exceptions

e throws is needed if

= The method itself throws
checked exception

= The method calls a
method that throws a
checked exception

e throws is not needed if

= All checked exceptions
are caught

= Any uncaught exceptions
are unchecked exceptions

18

Exceptions and the Java API

e Java API tells which methods throw exceptions
* Look at the method description
= Will list types of exceptions thrown and reason

 Examples:

" java.lang.String
e charAt () may throw IndexOutOfBoundsException
e endsWith () may throw NullPointerException

" java.lang.Double
e parseDouble () may throw NumberFormatException

e compareTo () may throw ClassCastException

3/13/12 Exceptions

19

