Lecture 11

Recursion

Announcements for This Lecture

Readings Prelim 1

e Read: pp. 403-408 * Info on course web site

* but SKIP sect. 15.1.2 * Which room to go to
e ProgramLive, page 15-3 * Prelim study guide

= many recursive examples = Past sample prelims
* Play with today’s demos « Review session Sunday

Assignment A3 " 1:30-3:30 pm
= Room TBA

* To be graded by Sunday = Run by one of your TAs

3/1/12 Recursion

Recursion

e Recursive Definition:

A definition that 1s defined in terms of itself
 Recursive Method:

A method that calls itself (directly or indirectly)

e Recursion: If you get the point, stop;
otherwise, see Recursion

 Infinite Recursion: See Infinite Recursion

3/1/12 Recursion

A Mathematical Example: Factorial

* Non-recursive definition:
nl=nxn-1x...x2x1
=nn-1x...x2x1)

e Recursive definition:
n!=n(n-1)! forn=0 Recursive case
O!'=1 Base case

What happens it there 1s no base case?

3/1/12 Recursion

Example: Fibonnaci Sequence

* Sequence of numbers: 1,1,2,3,5,8,13, ...

a, a, a, a, a, as dg

= Get the next number by adding previous two

= What 1s ag? A: ag=21
B: a;=29
C: ag=34
D: None of these.

3/1/12 Recursion

Example: Fibonnaci Sequence

* Sequence of numbers: 1,1,2,3,5,8,13, ...

a, a; a, d a, as dg
= Get the next number by adding previous two
= What 1s ag?

* Recursive definition:

"a,=a,,+a,, Recursive Case
"a,=1 Base Case
"a, =1 (another) Base Case

Why did we need two base cases this time?

3/1/12 Recursion

Fibonacci as a Recursive Method

/** Yields: Fibonacci number a,

* Precondition: n = 0 */

public static int fibonacci(int n) {
if(n<=1){

return 1; Base CaSC(S)

¥

return fibonacci(n-1)+ Recursive case
fibonacci(n-2);

What happens if we forget the base cases?

3/1/12 Recursion

Fibonacci as a Recursive Method

/** Yields: Fibonacci number a,

* Precondition: n = (0 */

public static int fibonacci(int n) {

f(n<=1){
return 1;

¥

return fibonacci(n-1)+
fibonacci(n-2);

3/1/12

e Method that calls itself

= Each call is new frame

* Frames require memory

= Infinite calls =
infinite memory

fibonacci:1 Fibonacci
n S int
fibonacci: 1 Fibonacci | | fibonacci:1 Fibonacci
n 4 int n 3 int

Recursion

Recursion as a Programming Tool

e Later in course, we will see iteration (loops)
e But recursion 1s often a good alternative

= Particularly over lists of things

= Examples: String, Vector<Animals>

* Some languages have no loops, only recursion
= “Functional languages™; topic of CS 3110

AS5: Recursion to draw fractal snowflakes

3/1/12 Recursion

String: Two Recursive Examples

/** Yields: the number of characters in s. */
public static int length(String s) {

if (s.equals(*”)) {

return 0: Imagine s.length()

does not exist

h

// { s has at least one character }
return 1 + length(s.substring(1));

¥

/** Yields: the number of ‘e’s in s. */
public static int numEs(String s) {
if (s.length() ==0) {
return O;
}
// { s has at least one character }
return (s.charAt(0) == ‘e’ ? 1 : 0) + numEs(s.substring(1));

Two Major Issues with Recursion

 How are recursive calls executed?
= We saw this with the Fibonacci example

= Use the method frame model of execution

e How do we understand a recursive method
(and how do we create one)?

" You cannot use execution to understand what a
recursive method does — too complicated

" You need to rely on the method specification

3/1/12 Recursion 11

How to Think About Recursive Methods

1. Have a precise method specification.
2. Base case(s):

* When the parameter values are as small as possible
= When the answer 1s determined with little calculation.

3. Recursive case(s):

= Recursive calls are used.

= Verily recursive cases with the specification
4. Termination:

* Arguments of recursive calls must somehow get “smaller”
= Each recursive call must get closer to a base case

3/1/12 Recursion 12

Understanding the String Example

/** Yields: the number of ‘e’s in s. */
public static int numEs(String s) {
if (s.length() ==0) {

return O;

} | Base case
/I { s has at least one character }

return (s.charAt(0) == ‘e’ ?1:0)
+ numEs(s.substring(1));

Recursive case

0 1 s.length()
s | H| ello World!

Notation

s[i1] shorthand for s.charAt(1)

s[1..] shorthand for s.substring(1)

e Express using specification,
but on a smaller scale

number of ‘e’sin s =
(if s[0] = ‘e’ then 1 else 0)
+ number of ‘e’s in s[1..]

13

Understanding the String Example

e Step 1: Have a precise specification

/** Yields: the number of ‘e’s in s. */

. . . Notation
public static int numEs(String s) {
if (s.length() == 0) { s[i1] shorthand for s.charAt(1)
return 0; Base case s[1..] shorthand for s.substring(i)

h

// { s has at least one character }
(// return (s[0] = ‘e’ ? 1 : 0) + number of ‘e’s in s[1..];)
return (s.charAt(0) == ‘e’ ? 1 : 0) + numEs(s.substring(1)); | Recursive case

¥
e Step 2: Check the base case

* When s is the empty string, O 1s returned.
= So the base case is handled correctly.

Understanding the String Example

e Step 3: Recursive calls make progress toward termination

/** Yields: the number of ‘e’s in s. */

public static int numEs(String s) {
if (s.length() ==0) {
return O; parameter s

h

// { s has at least one character }

argument s[1..] is smaller than
parameter s, so there is progress

toward reaching base case 0

argument s[1..]

// return (s[0] = ‘e’ ? 1 :0) + number of ‘e¢’s in s[1..];
return (s.charAt(0) == ‘e’ ? 1 : 0) + numEs(s.substring(1));

e Step 4: Recursive case is correct

= Just check the specification

Notation

s[i] shorthand for s.charAt(1)

s[1..] shorthand for s.substring(1)

15

Exercise: Remove Blanks from a String

1. Have a precise specification

/** Yields: s but with its blanks removed */

public static String deblank(String s)

2. Base Case: the smallest String s 1s "".

if (s.length() == 0) { Notation
return s; s[1] shorthand for s.charAt(1)
} s[i..] shorthand for s.substring(i)

3. Other Cases: String s has at least 1 character.
return (s[0] ==""7"": s[0]) + (s[1..] with 1ts blanks removed)

3/1/12 Recursion 16

What the Recursion Does

deblank a b C

X deblank | a b C

a deblank b C

X deblank | b C b
b deblank C b
X deblank | ¢ C

222222

Exercise: Remove Blanks from a String

/** Yields: s but with blanks removed */
public static String deblank(String s) {
if (s.length() ==0) { returns; }
// {s 1s not empty}
if (s[0] is a blank) {
return s[1..] with blanks removed

// {s 1s not empty and s[0] is not blank }

return s[0] +
(s[1..] with blanks removed);

e Write code in pseudocode
= Mixture of English and code

= Similar to top-down design
e Stuff in green looks like the
method specification!

= But on a smaller string
= Replace with deblank(s[1..])

Notation

s[i] shorthand for s.charAt(1)

s[1..] shorthand for s.substring(1)

3/1/12 Recursion 18

Exercise: Remove Blanks from a String

/** Yields: s but with blanks removed */ e Check the four points:
public static String deblank(String s) { 1

if (s.length() ==0) { returns; }

// {s 1s not empty }
if (s.charAt(0) =="'" { 3. Recursive case: progress

toward termination?

Precise specification?

2. Base case: correct?

return deblank(s.substring(1));
) 4. Recursive case: correct?

// {s 1s not empty and s[0] is not blank }

Notation

return s.charAt(0) +
deblank(s.substring(1)); s[i] shorthand for s.charAt(i)

s[1..] shorthand for s.substring(1)

3/1/12 Recursion 19

Next Time: A Lot of Examples

3/1/12

20

