Announcements for This Lecture

Readings Prelim 1

* Read: pp. 403-408
= but SKIP sect. 15.1.2
* ProgramLive, page 15-3

= many recursive examples

* Info on course web site
= Which room to go to
= Prelim study guide
= Past sample prelims

¢ Play with today’s demos « Review session Sunday

Assignment A3 = 1:30-3:30 pm

= Room announced on web

* To be graded by Sunday = Run by one of your TAs

3112 Recursion 1

Recursion

* Recursive Definition:
A definition that is defined in terms of itself
* Recursive Method:
A method that calls itself (directly or indirectly)

* Recursion: If you get the point, stop;
otherwise, see Recursion
* Infinite Recursion: See Infinite Recursion

3112 Recursion

A Mathematical Example: Factorial

¢ Non-recursive definition:
nl=nxnlx..x2x1
=n(n-1x...x2x1)

e Recursive definition:
n!=n(n-1)! forn=0 Recursive case

0ol'=1 Base case

What happens if there is no base case?

3112 Recursion 3

Example: Fibonnaci Sequence

* Sequence of numbers: 1,1,2,3,5,8,13, ...
a, a, a, ay a, as ag
= Get the next number by adding previous two
= What is ag?
* Recursive definition:

"a,=a,,+a,, Recursive Case
"ay=1 Base Case
"a =1 (another) Base Case

Why did we need two base cases this time?

3112 Recursion

Fibonacci as a Recursive Method

* Method that calls itself
* Precondition: n = 0 */ = Each call is new frame

public static int fibonacci(int n) { = Frames require memory

if(n<=D{ = Infinite calls =
return 1; infinite memory
} fibonacci: 1 Fibonacci
return fibonacci(n-1)+
fibonacci(n-2); n Eint
}
fibonacci: 1 Fibonacci | | fibonacci: 1 Fibonacci
i i

3112 Recursion 5

String: Two Recursive Examples

/#* Yields: the number of characters in s. */
public static int length(String s) {

if (s.equals(“”)) {

return 0; Imagine s.length()

does not exist

/I'{ s has at least one character }
return 1 + length(s.substring(1));

/*#% Yields: the number of ‘¢’s in s. */
public static int numEs(String s) {
if (s.length() == 0) {
return 0;
}
//'{ s has at least one character }
return (s.charAt(0) == ‘e’ 7 1 : 0) + numEs(s.substring(1));

3/1/12

How to Think About Recursive Methods

1. Have a precise method specification.
2. Base case(s):
= When the parameter values are as small as possible
= When the answer is determined with little calculation.
3. Recursive case(s):
= Recursive calls are used.
= Verify recursive cases with the specification
4. Termination:
= Arguments of recursive calls must somehow get “smaller”
= Each recursive call must get closer to a base case

3112 Recursion 7

Understanding the String Example

/
public static int numEs(String s) {
if (s.length() == 0) {

return 0; s[i..] shorthand for s.substring(i)

Yields: the number of ‘e’s in's. *

Notation
s[i] shorthand for s.charAt(i)

/1 { s has at least one character }
return (s.charAt(0) ==‘e’ ?1:0)
+ numEs(s.substring(1));

Recursive case

* Express using specification,
but on a smaller scale

} number of ‘e’sins =
(if s[0] = ‘e’ then 1 else 0)

0 1 s.length() + number of ‘e’s in s[1..]

H| ello World!

s

Understanding the String Example

* Step 1: Have a precise specification

Jro

public static int numEs(String s) {
if (s.length() == 0) {

3

'/ { s has at least one character }
(/[return (s[0] = ‘¢’ ? 1 : 0) + number of ‘e’s in s[1..];)

return (s.charAt(0) == ‘e’ 7 1 : 0) + numEs(s.substring(1));
3

e Step 2: Check the base case
= When s is the empty string, O is returned.
= So the base case is handled correctly.

ields: the number of ‘e’s in s. */ -
Notation

s[i] shorthand for s.charAt(i)

s[i..] shorthand for s.substring(i)

9
Exercise: Remove Blanks from a String

1. Have a precise specification

/#* Yields: s but with its blanks removed */

public static String deblank(String s)
2. Base Case: the smallest String s is "".

if (s.length() == 0) { Notation

return s; s[i] shorthand for s.charAt(i)
3 s[i..] shorthand for s.substring(i)

3. Other Cases: String s has at least 1 character.
return (s[0] ==""7?"":s[0]) + (s[1..] with its blanks removed)

3112 Recursion 1

8
Understanding the String Example
¢ Step 3: Recursive calls make progress toward termination
/** Yields: the number of ‘e’s in s. */ i ller th
public static int numEs(String s) { gl o1l s il i
if (s.length() == 0) { parameter s, so there is progress
return 0; parameter s toward reaching base case 0
}
1/ { s has at least one character } argument s[1..]
// return (s[0] = ‘e’ ? 1 : 0) + number of ‘e’s in s[1..];
return (s.charAt(0) == ‘¢’ ? 1 : 0) + numEs(s.substring(1));
}
Notation
* Step 4: Recursive case is correct s[i] shorthand for s.charAt(i)
® Just check the specification s[i..] shorthand for s.substring(i)
10
Exercise: Remove Blanks from a String
/4% Yields: s but with blanks removed */ o Write code in pseudocode
public static String deblank(String s) { = Mixture of English and code
if (s length() ==0) { returns; } = Similar to top-down design
/I {s is not empty} . .
if (s[0] is a blank) { : Sluf}f 1:11 greepﬁlooks 1'1 ke the
return s[1..] with blanks removed method specification:
) = But on a smaller string
= Replace with deblank(s[1..])
/I {s is not empty and s[0] is not blank } -
return s[0] + Notation
(s[1..] with blanks removed); s[i] shorthand for s.charAt(i)
¥ s[i..] shorthand for s.substring(i)
31112 Recursion 12

3/1/12

