
Why Object Oriented ���
Programming?	

Interlude 	

	

Announcements for This Lecture	

This Week	

•  Today is an Interlude	

  Nothing today is on exam	

  “Big Picture” lecture; may ���

still be very helpful to you	

•  Thursday is Recursion	

  Hardest topic in course	

  But will try to make it easy	

  Be there or be LOST	

•  Then the class gets easier…	

Announcements	

•  Assignment 1 Resubmissions	

  181 out of 195 have a 10	

  Today is absolute last day	

•  Assignment 2 is graded	

  Solution posted in CMS	

  Mean 12.8/15; Median 13	

•  Assignment 3 due today	

  Turn in by Midnight	

  Will be graded by weekend	

2/28/12	

 2	

Object Oriented	

2/28/12	

 Object Oriented	

 3	

A Short History of Programming: ���
First Generation	

A Short History of Programming: ���
Assembly Language	

.data # start of data!

x: !
 .long 1!
 .long 5!
 .long 2!
 .long 18!

sum:!
 .long 0!

.text # start of code!

.globl _start!

_start:  
movl $4, %eax # EAX is counter  
 # for number of  
 # words to sum  
movl $0, %ebx # EBX stores sum
movl $x, %ecx # ECX points to  
 # next item to sum!

top:  
addl (%ecx), %ebx  
addl $4, %ecx # move to next
decl %eax # decr. counter  
jnz top # if counter not  
 # 0, then loop !

done: !
!movl %ebx,sum # done, store  
 # result in "sum"!

2/28/12	

 Object Oriented	

 4	

A Short History of Programming: ���
Assembly Language	

•  Commands correspond to
machine instructions	

  Close to machine language ���

(no need to compile)	

  Programming “on the iron”	

•  Lot of load/store commands	

  movl from previous slide	

  Registers hold the data ���

(like a variable)	

  Moving between RAM and

registers is tedious	

•  Hard to write large programs	

2/28/12	

 Object Oriented	

 5	

Program
Counter	

Instruction
Register	

Program

Status	

EAX	

EBX	

ECX	

EDX	

MAR	

MBR	

Memory Buffer	

Address Register	

CPU	

RAM	

General	

Registers	

“High Level” Languages	

•  Language that is abstracted from the computer	

 Working with a metaphor, not on the iron	

  “Folders” are actually a metaphor of a metaphor	

•  Compiles (or translates) to assembly	

 And then down to pure machine language	

 One high-level line may be many lines of assembly	

•  Today there are many languages to choose from	

 We cannot agree on which metaphors are best	

 A lot of CS is coming up with these metaphors	

2/28/12	

 Object Oriented	

 6	

A Short History of Programming: ���
BASIC	

10 INPUT "What is your name: ", U$!
20 PRINT "Hello "; U$!
30 INPUT "How many stars do you want: ", N!
40 S$ = ""!
50 FOR I = 1 TO N!
60 S$ = S$ + "*"!
70 NEXT I!
80 PRINT S$!
90 INPUT "Do you want more stars? ", A$!
100 IF LEN(A$) = 0 THEN GOTO 90!
110 A$ = LEFT$(A$, 1)!
120 IF A$ = "Y" OR A$ = "y" THEN GOTO 30!
130 PRINT "Goodbye "; U$!
140 END!
2/28/12	

 Object Oriented	

 7	

Very complex in assembly	

• Draw String on monitor	

• Wait for keyboard input	

• Convert input to String	

• Put String in variable U$!

A Short History of Programming: ���
BASIC	

•  The Metaphor	

  Commands have line numbers	

  Process the lines in order	

  GOTO, NEXT statements ���

can jump forward or back	

•  Made programming easy!	

  On every computer in 80s	

  Primary hobbyist language	

•  But code was monolithic	

  Use a single number ordering	

  Code all fits in a single “file”	

  Large programs still hard	

10 REM Sample BASIC Program 	

20 REM Counts To Ten	

30 REM	

40 PRINT "I am a BASIC program"	

50 PRINT "that counts to ten."	

60 PRINT	

70 FOR I=1 TO 10	

80 PRINT I	

90 NEXT I	

100 PRINT	

110 PRINT "Thanks for running me."	

120 END	

2/28/12	

 Object Oriented	

 8	

Computer Game Development	

Credits: Planetfall (1983)	

Steve Meretzky	

Credits: Portal (2007)	

2/28/12	

 Object Oriented	

 9	

Challenge: Breaking Up Software	

2/28/12	

 Object Oriented	

 10	

Written by one	

person/group	

By another	

person/group	

Must coordinate	

A Short History of Programming: ���
C (and its descendants)	

int main() {!
 int var1 = 1;!
 int var2 = 2;!
 printf("max(%d,%d)=%d",  

 var1, var2,  
 max(var1,var2));!

 exit 0;!
}!

int max(int a, int b) {!
!if (a > b) {!
! !return a;!
!}!
!return b;!

}!

2/28/12	

 Object Oriented	

 11	

A Short History of Programming: ���
C (and its descendants)	

•  The Metaphor	

  Organized via functions

(with side-effects)	

  Procedures: functions that

return a value of type void	

  Function declarations can

spread over multiple files	

•  Supports modularity	

  Each programmer works to
define a function (or many)	

  Can call a function made by
another programmer	

2/28/12	

 Object Oriented	

 12	

int max(int a, int b) {!
!if (a > b) {!
! !return a;!
!}!
!return b;!

}!

C is like programming in Java,

but only using static methods	

Challenge: Breaking Up Software	

2/28/12	

 Object Oriented	

 13	

Function Bodies	

Function Calls	

Function Bodies	

Coordinating
groups must
agree on what
the headers of	

the functions	

look like.	

Encapsulation: Reducing Dependencies	

•  Development is iterative	

  You are always making changes ���

(to improve your software)	

•  Coordination hurts iteration	

  Others are calling your functions	

  If you change your functions work,���

their code may no longer work	

  Example: Our test code in A1	

•  Encapsulation: limit what the other
programmers can access in your code	

  If cannot access, changes are okay 	

2/28/12	

 Object Oriented	

 14	

 Person 1	

 Person 2	

Easy to	

change	

Hard to	

change	

private	

public	

Encapsulation is the Primary Purpose ���
of Object Oriented Programming	

•  Encapsulation applies to ���
both code and data!	

  Data in JFrame is hidden	

  Could you tell if it was

changed in later versions?	

•  Encapsulation in Java	

  Make all data private	

  Force data access through the

methods (getters/setters)	

•  Public methods: the interface	

  Not allowed to change the
interface without permission	

2/28/12	

 Object Oriented	

@105dc	

farenheit double
Temperature	

setFarenheit(double)
setCelsius(double)

getFarenheit()
getCelsius()

Temperature(double)

15	

celsius double

32.0
0.0

@3cf92	

farenheit double

BetterTemperature	

setFarenheit(double)
setCelsius(double)

getFarenheit()
getCelsius()

Temperature(double)

32.0

Object Oriented Descendants of C	

Direct Descendants	

•  C++	

  Optional OO features for C;���

a superset of C language	

  High performance language	

  But kludgy and messy	

•  Objective-C	

  Also superset of C language	

  Trades performance for

collaboration features	

  Used in OS X, iPhone	

“Cousin” Languages	

•  Java	

  “Reimagining” of C++	

•  Fixes a lot of the problems	

•  A little easier for beginners	

  Compile one, run anywhere	

•  Ideal language for the web	

•  Others are platform specific	

•  C#	

  “Reimagining” of Java	

  Microsoft specific language	

2/28/12	

 Object Oriented	

 16	

Java for Beginners: Challenges	

Advantages 	

•  Very useful language	

  Can make professional-

quality programs	

  Standard language for web	

•  Works on any platform ���
(OS X, Windows, mobile)	

•  Easier than many alternatives	

  C++ too hard for beginners	

  Others not as powerful 	

Disadvantages	

•  The C influence is showing	

  types, functions, void	

  Designed for people who

learned the other languages	

•  Too much to learn at start	

  Cannot program without
learning classes/objects first	

  Lots of mysterious keywords	

2/28/12	

 Object Oriented	

 17	

Java for Beginners: Challenges	

Advantages 	

•  Very useful language	

  Can make professional-

quality programs	

  Standard language for web	

•  Works on any platform ���
(OS X, Windows, mobile)	

•  Easier than many alternatives	

  C++ too hard for beginners	

  Others not as powerful 	

Disadvantages	

•  The C influence is showing	

  types, functions, void	

  Designed for people who

learned the other languages	

•  Too much to learn at start	

  Cannot program without
learning classes/objects first	

  Lots of mysterious keywords	

2/28/12	

 Object Oriented	

 18	

What We Really Want:	

• Language with modern OO features	

• As easy to pick up as BASIC was	

A Short History of Programming: ���
Is Python Best for Beginners?	

•  The Metaphor	

  Mainly functions (like C)	

  Classes and objects exist, ���

but are all optional	

  No distinction between the

“interactions pane” and file	

•  An untyped language	

  Language checks the types
for you automatically	

  Both a plus and a minus	

•  CS 1110 starting this Fall	

def greet(name):  
print 'Hello', name!

greet('Jack')!
greet('Jill')!
greet('Bob')!

2/28/12	

 Object Oriented	

 19	

